12 KiB
PaddleClas构建有人/无人分类案例
此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、SKL-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
目录
1. 环境配置
- 安装:请先参考 Paddle 安装教程 以及 PaddleClas 安装教程 配置 PaddleClas 运行环境。
2. 有人/无人场景推理预测
2.1 下载模型
- 进入
deploy
运行目录。
cd deploy
下载有人/无人分类的模型。
mkdir models
cd models
# 下载inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/person_cls_infer.tar && tar -xf person_cls_infer.tar
解压完毕后,models
文件夹下应有如下文件结构:
├── person_cls_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
2.2 模型推理预测
2.2.1 预测单张图像
返回 deploy
目录:
cd ../
运行下面的命令,对图像 ./images/PULC/person/objects365_02035329.jpg
进行有人/无人分类。
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
输出结果如下。
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
备注: 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的val
数据集在千分之一Fpr下得到的最佳Tpr所得到的阈值为0.9794
,故此处的threshold
为0.9794
。该阈值的确定方法可以参考3.2节
2.2.2 基于文件夹的批量预测
如果希望预测文件夹内的图像,可以直接修改配置文件中的 Global.infer_imgs
字段,也可以通过下面的 -o
参数修改对应的配置。
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.infer_imgs="./images/PULC/person/"
终端中会输出该文件夹内所有图像的分类结果,如下所示。
objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
其中,someone
表示该图里存在人,nobody
表示该图里不存在人。
3.有人/无人场景训练
3.1 数据准备
进入 PaddleClas 目录。
cd path_to_PaddleClas
进入 dataset/
目录,下载并解压有人/无人场景的数据。
cd dataset
wget https://paddleclas.bj.bcebos.com/data/cls_demo/person.tar
tar -xf person.tar
cd ../
执行上述命令后,dataset/
下存在person
目录,该目录中具有以下数据:
├── train
│ ├── 000000000009.jpg
│ ├── 000000000025.jpg
...
├── val
│ ├── objects365_01780637.jpg
│ ├── objects365_01780640.jpg
...
├── ImageNet_val
│ ├── ILSVRC2012_val_00000001.JPEG
│ ├── ILSVRC2012_val_00000002.JPEG
...
├── train_list.txt
├── train_list.txt.debug
├── train_list_for_distill.txt
├── val_list.txt
└── val_list.txt.debug
其中train/
和val/
分别为训练集和验证集。train_list.txt
和val_list.txt
分别为训练集和验证集的标签文件,train_list.txt.debug
和val_list.txt.debug
分别为训练集和验证集的debug
标签文件,其分别是train_list.txt
和val_list.txt
的子集,用该文件可以快速体验本案例的流程。ImageNet_val/
是ImageNet的验证集,该集合和train
集合的混合数据用于本案例的SKL-UGI知识蒸馏策略
,对应的训练标签文件为train_list_for_distill.txt
。
-
注意:
-
本案例中所使用的所有数据集均为开源数据,
train
集合为MS-COCO数据的训练集的子集,val
集合为Object365数据的训练集的子集,ImageNet_val
为ImageNet数据的验证集。数据集的筛选流程可以参考有人/无人场景数据集筛选方法。
3.2 模型训练
3.2.1 基于默认超参数训练
3.2.1.1 基于默认超参数训练轻量级模型
在ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
验证集的最佳指标在0.94-0.95之间(数据集较小,容易造成波动)。
备注:
-
此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr为千分之一。关于Fpr和Tpr的更多介绍,可以参考这里。
-
在eval时,会打印出来当前最佳的TprAtFpr指标,具体地,其会打印当前的
Fpr
、Tpr
值,以及当前的threshold
值,Tpr
值反映了在当前Fpr
值下的召回率,该值越高,代表模型越好。threshold
表示当前最佳Fpr
所对应的分类阈值,可用于后续模型部署落地等。
3.2.1.2 基于默认超参数训练教师模型
复用ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
中的超参数,训练教师模型,训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
验证集的最佳指标为0.96-0.98之间,当前教师模型最好的权重保存在output/ResNet101_vd/best_model.pdparams
。
3.2.1.3 基于默认超参数进行蒸馏训练
配置文件ppcls/configs/PULC/PULC/Distillation/PPLCNet_x1_0_distillation.yaml
提供了SKL-UGI知识蒸馏策略
的配置。该配置将ResNet101_vd
当作教师模型,PPLCNet_x1_0
当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
验证集的最佳指标为0.95-0.97之间,当前模型最好的权重保存在output/DistillationModel/best_model_student.pdparams
。
3.2.2 超参数搜索训练
3.2 小节 提供了在已经搜索并得到的超参数上进行了训练,此部分内容提供了搜索的过程,此过程是为了得到更好的训练超参数。
- 搜索运行脚本如下:
python tools/search_strategy.py -c ppcls/configs/StrategySearch/person.yaml
在ppcls/configs/StrategySearch/person.yaml
中指定了具体的 GPU id 号和搜索配置, 默认搜索的训练日志和模型存放于output/search_person
中,最终的蒸馏模型存放于output/search_person/search_res/DistillationModel/best_model_student.pdparams
。
-
注意:
-
3.1小节提供的默认配置已经经过了搜索,所以此过程不是必要的过程,如果自己的训练数据集有变化,可以尝试此过程。
-
此过程基于当前数据集在 V100 4 卡上大概需要耗时 10 小时,如果缺少机器资源,希望体验搜索过程,可以将
ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
中的train_list.txt
和val_list.txt
分别替换为train_list.txt.debug
和val_list.txt.debug
。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。另外,搜索空间可以根据当前的机器资源来调整,如果机器资源有限,可以尝试缩小搜索空间,如果机器资源较充足,可以尝试扩大搜索空间。 -
如果此过程搜索的得到的超参数与3.2.1小节提供的超参数不一致,主要是由于训练数据较小造成的波动导致,可以忽略。
4. 模型评估与推理
4.1 模型评估
训练好模型之后,可以通过以下命令实现对模型指标的评估。
python3 tools/eval.py \
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/DistillationModel/best_model_student"
4.2 模型预测
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 tools/infer.py
中提供了完整的示例,只需执行下述命令即可完成模型预测:
python3 tools/infer.py \
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
-o Infer.infer_imgs=./dataset/person/val/objects365_01780637.jpg \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
输出结果如下:
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person/val/objects365_01780637.jpg'}]
备注: 这里的Infer.PostProcess.threshold
的值需要根据实际场景来确定,此处的0.9794
是在该场景中的val
数据集在千分之一Fpr下得到的最佳Tpr所得到的。
4.3 使用 inference 模型进行推理
4.3.1 导出 inference 模型
通过导出 inference 模型,PaddlePaddle 支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理: 首先,对训练好的模型进行转换:
python3 tools/export_model.py \
-c ./ppcls/configs/cls_demo/PULC/PPLCNet/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person
执行完该脚本后会在deploy/models/
下生成PPLCNet_x1_0_person
文件夹,该文件夹中的模型与 2.2 节下载的推理预测模型格式一致。
4.3.2 基于 inference 模型推理预测
推理预测的脚本为:
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person" -o PostProcess.ThreshOutput.threshold=0.9794
备注:
- 此处的
PostProcess.ThreshOutput.threshold
由eval时的最佳threshold
来确定。 - 更多关于推理的细节,可以参考2.2节。