100 lines
3.2 KiB
C++
100 lines
3.2 KiB
C++
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <ctime>
|
|
#include <memory>
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "json/json.h"
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
|
|
#include "paddle_api.h" // NOLINT
|
|
|
|
#include "include/config_parser.h"
|
|
#include "include/picodet_postprocess.h"
|
|
#include "include/preprocess_op.h"
|
|
#include "include/utils.h"
|
|
|
|
using namespace paddle::lite_api; // NOLINT
|
|
|
|
namespace PPShiTu {
|
|
|
|
// Generate visualization colormap for each class
|
|
std::vector<int> GenerateColorMap(int num_class);
|
|
|
|
// Visualiztion Detection Result
|
|
cv::Mat VisualizeResult(const cv::Mat &img,
|
|
const std::vector<PPShiTu::ObjectResult> &results,
|
|
const std::vector<std::string> &lables,
|
|
const std::vector<int> &colormap, const bool is_rbox);
|
|
|
|
class ObjectDetector {
|
|
public:
|
|
explicit ObjectDetector(const Json::Value &config,
|
|
const std::string &model_dir, int cpu_threads = 1,
|
|
const int batch_size = 1) {
|
|
config_.load_config(config);
|
|
printf("config created\n");
|
|
preprocessor_.Init(config_.preprocess_info_);
|
|
printf("before object detector\n");
|
|
if (config["Global"]["det_model_path"].as<std::string>().empty()) {
|
|
std::cout << "Please set [det_model_path] in config file" << std::endl;
|
|
exit(-1);
|
|
}
|
|
LoadModel(config["Global"]["det_model_path"].as<std::string>(),
|
|
cpu_threads);
|
|
printf("create object detector\n");
|
|
}
|
|
|
|
// Load Paddle inference model
|
|
void LoadModel(std::string model_file, int num_theads);
|
|
|
|
// Run predictor
|
|
void Predict(const std::vector<cv::Mat> &imgs, const int warmup = 0,
|
|
const int repeats = 1,
|
|
std::vector<PPShiTu::ObjectResult> *result = nullptr,
|
|
std::vector<int> *bbox_num = nullptr,
|
|
std::vector<double> *times = nullptr);
|
|
|
|
// Get Model Label list
|
|
const std::vector<std::string> &GetLabelList() const {
|
|
return config_.label_list_;
|
|
}
|
|
|
|
private:
|
|
// Preprocess image and copy data to input buffer
|
|
void Preprocess(const cv::Mat &image_mat);
|
|
// Postprocess result
|
|
void Postprocess(const std::vector<cv::Mat> mats,
|
|
std::vector<PPShiTu::ObjectResult> *result,
|
|
std::vector<int> bbox_num, bool is_rbox);
|
|
|
|
std::shared_ptr<PaddlePredictor> predictor_;
|
|
Preprocessor preprocessor_;
|
|
ImageBlob inputs_;
|
|
std::vector<float> output_data_;
|
|
std::vector<int> out_bbox_num_data_;
|
|
float threshold_;
|
|
ConfigPaser config_;
|
|
};
|
|
|
|
} // namespace PPShiTu
|