PaddleClas/deploy/lite_shitu/include/preprocess_op.h

191 lines
5.2 KiB
C++

// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "json/json.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
namespace PPShiTu {
// Object for storing all preprocessed data
class ImageBlob {
public:
// image width and height
std::vector<float> im_shape_;
// Buffer for image data after preprocessing
std::vector<float> im_data_;
// in net data shape(after pad)
std::vector<float> in_net_shape_;
// Evaluation image width and height
// std::vector<float> eval_im_size_f_;
// Scale factor for image size to origin image size
std::vector<float> scale_factor_;
};
// Abstraction of preprocessing opration class
class PreprocessOp {
public:
virtual void Init(const Json::Value &item) = 0;
virtual void Run(cv::Mat *im, ImageBlob *data) = 0;
};
class InitInfo : public PreprocessOp {
public:
virtual void Init(const Json::Value &item) {}
virtual void Run(cv::Mat *im, ImageBlob *data);
};
class NormalizeImage : public PreprocessOp {
public:
virtual void Init(const Json::Value &item) {
mean_.clear();
scale_.clear();
for (auto tmp : item["mean"]) {
mean_.emplace_back(tmp.as<float>());
}
for (auto tmp : item["std"]) {
scale_.emplace_back(tmp.as<float>());
}
is_scale_ = item["is_scale"].as<bool>();
}
virtual void Run(cv::Mat *im, ImageBlob *data);
void Run_feature(cv::Mat *im, const std::vector<float> &mean,
const std::vector<float> &std, float scale);
private:
// CHW or HWC
std::vector<float> mean_;
std::vector<float> scale_;
bool is_scale_;
};
class Permute : public PreprocessOp {
public:
virtual void Init(const Json::Value &item) {}
virtual void Run(cv::Mat *im, ImageBlob *data);
void Run_feature(const cv::Mat *im, float *data);
};
class Resize : public PreprocessOp {
public:
virtual void Init(const Json::Value &item) {
interp_ = item["interp"].as<int>();
// max_size_ = item["target_size"].as<int>();
keep_ratio_ = item["keep_ratio"].as<bool>();
target_size_.clear();
for (auto tmp : item["target_size"]) {
target_size_.emplace_back(tmp.as<int>());
}
}
// Compute best resize scale for x-dimension, y-dimension
std::pair<float, float> GenerateScale(const cv::Mat &im);
virtual void Run(cv::Mat *im, ImageBlob *data);
void Run_feature(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
int size = 0);
private:
int interp_;
bool keep_ratio_;
std::vector<int> target_size_;
std::vector<int> in_net_shape_;
};
// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
public:
virtual void Init(const Json::Value &item) {
stride_ = item["stride"].as<int>();
}
virtual void Run(cv::Mat *im, ImageBlob *data);
private:
int stride_;
};
class TopDownEvalAffine : public PreprocessOp {
public:
virtual void Init(const Json::Value &item) {
trainsize_.clear();
for (auto tmp : item["trainsize"]) {
trainsize_.emplace_back(tmp.as<int>());
}
}
virtual void Run(cv::Mat *im, ImageBlob *data);
private:
int interp_ = 1;
std::vector<int> trainsize_;
};
void CropImg(cv::Mat &img, cv::Mat &crop_img, std::vector<int> &area,
std::vector<float> &center, std::vector<float> &scale,
float expandratio = 0.15);
class Preprocessor {
public:
void Init(const Json::Value &config_node) {
// initialize image info at first
ops_["InitInfo"] = std::make_shared<InitInfo>();
for (const auto &item : config_node) {
auto op_name = item["type"].as<std::string>();
ops_[op_name] = CreateOp(op_name);
ops_[op_name]->Init(item);
}
}
std::shared_ptr<PreprocessOp> CreateOp(const std::string &name) {
if (name == "DetResize") {
return std::make_shared<Resize>();
} else if (name == "DetPermute") {
return std::make_shared<Permute>();
} else if (name == "DetNormalizeImage") {
return std::make_shared<NormalizeImage>();
} else if (name == "DetPadStride") {
// use PadStride instead of PadBatch
return std::make_shared<PadStride>();
} else if (name == "TopDownEvalAffine") {
return std::make_shared<TopDownEvalAffine>();
}
std::cerr << "can not find function of OP: " << name
<< " and return: nullptr" << std::endl;
return nullptr;
}
void Run(cv::Mat *im, ImageBlob *data);
public:
static const std::vector<std::string> RUN_ORDER;
private:
std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};
} // namespace PPShiTu