191 lines
5.2 KiB
C++
191 lines
5.2 KiB
C++
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "json/json.h"
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
|
|
namespace PPShiTu {
|
|
|
|
// Object for storing all preprocessed data
|
|
class ImageBlob {
|
|
public:
|
|
// image width and height
|
|
std::vector<float> im_shape_;
|
|
// Buffer for image data after preprocessing
|
|
std::vector<float> im_data_;
|
|
// in net data shape(after pad)
|
|
std::vector<float> in_net_shape_;
|
|
// Evaluation image width and height
|
|
// std::vector<float> eval_im_size_f_;
|
|
// Scale factor for image size to origin image size
|
|
std::vector<float> scale_factor_;
|
|
};
|
|
|
|
// Abstraction of preprocessing opration class
|
|
class PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) = 0;
|
|
virtual void Run(cv::Mat *im, ImageBlob *data) = 0;
|
|
};
|
|
|
|
class InitInfo : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) {}
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
};
|
|
|
|
class NormalizeImage : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) {
|
|
mean_.clear();
|
|
scale_.clear();
|
|
for (auto tmp : item["mean"]) {
|
|
mean_.emplace_back(tmp.as<float>());
|
|
}
|
|
for (auto tmp : item["std"]) {
|
|
scale_.emplace_back(tmp.as<float>());
|
|
}
|
|
is_scale_ = item["is_scale"].as<bool>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
void Run_feature(cv::Mat *im, const std::vector<float> &mean,
|
|
const std::vector<float> &std, float scale);
|
|
|
|
private:
|
|
// CHW or HWC
|
|
std::vector<float> mean_;
|
|
std::vector<float> scale_;
|
|
bool is_scale_;
|
|
};
|
|
|
|
class Permute : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) {}
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
void Run_feature(const cv::Mat *im, float *data);
|
|
};
|
|
|
|
class Resize : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) {
|
|
interp_ = item["interp"].as<int>();
|
|
// max_size_ = item["target_size"].as<int>();
|
|
keep_ratio_ = item["keep_ratio"].as<bool>();
|
|
target_size_.clear();
|
|
for (auto tmp : item["target_size"]) {
|
|
target_size_.emplace_back(tmp.as<int>());
|
|
}
|
|
}
|
|
|
|
// Compute best resize scale for x-dimension, y-dimension
|
|
std::pair<float, float> GenerateScale(const cv::Mat &im);
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
void Run_feature(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
|
|
int size = 0);
|
|
|
|
private:
|
|
int interp_;
|
|
bool keep_ratio_;
|
|
std::vector<int> target_size_;
|
|
std::vector<int> in_net_shape_;
|
|
};
|
|
|
|
// Models with FPN need input shape % stride == 0
|
|
class PadStride : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) {
|
|
stride_ = item["stride"].as<int>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
private:
|
|
int stride_;
|
|
};
|
|
|
|
class TopDownEvalAffine : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const Json::Value &item) {
|
|
trainsize_.clear();
|
|
for (auto tmp : item["trainsize"]) {
|
|
trainsize_.emplace_back(tmp.as<int>());
|
|
}
|
|
}
|
|
|
|
virtual void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
private:
|
|
int interp_ = 1;
|
|
std::vector<int> trainsize_;
|
|
};
|
|
|
|
void CropImg(cv::Mat &img, cv::Mat &crop_img, std::vector<int> &area,
|
|
std::vector<float> ¢er, std::vector<float> &scale,
|
|
float expandratio = 0.15);
|
|
|
|
class Preprocessor {
|
|
public:
|
|
void Init(const Json::Value &config_node) {
|
|
// initialize image info at first
|
|
ops_["InitInfo"] = std::make_shared<InitInfo>();
|
|
for (const auto &item : config_node) {
|
|
auto op_name = item["type"].as<std::string>();
|
|
|
|
ops_[op_name] = CreateOp(op_name);
|
|
ops_[op_name]->Init(item);
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<PreprocessOp> CreateOp(const std::string &name) {
|
|
if (name == "DetResize") {
|
|
return std::make_shared<Resize>();
|
|
} else if (name == "DetPermute") {
|
|
return std::make_shared<Permute>();
|
|
} else if (name == "DetNormalizeImage") {
|
|
return std::make_shared<NormalizeImage>();
|
|
} else if (name == "DetPadStride") {
|
|
// use PadStride instead of PadBatch
|
|
return std::make_shared<PadStride>();
|
|
} else if (name == "TopDownEvalAffine") {
|
|
return std::make_shared<TopDownEvalAffine>();
|
|
}
|
|
std::cerr << "can not find function of OP: " << name
|
|
<< " and return: nullptr" << std::endl;
|
|
return nullptr;
|
|
}
|
|
|
|
void Run(cv::Mat *im, ImageBlob *data);
|
|
|
|
public:
|
|
static const std::vector<std::string> RUN_ORDER;
|
|
|
|
private:
|
|
std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
|
|
};
|
|
|
|
} // namespace PPShiTu
|