PaddleClas/tools/test_hubserving.py

114 lines
3.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from tools.infer.utils import parse_args, get_image_list, preprocess, np_to_b64
from ppcls.utils import logger
import numpy as np
import cv2
import time
import requests
import json
import base64
def main(args):
image_path_list = get_image_list(args.image_file)
headers = {"Content-type": "application/json"}
cnt = 0
predict_time = 0
all_score = 0.0
start_time = time.time()
batch_input_list = []
img_name_list = []
cnt = 0
for idx, img_path in enumerate(image_path_list):
img = cv2.imread(img_path)
if img is None:
logger.warning(
"Image file failed to read and has been skipped. The path: {}".
format(img_path))
continue
else:
img = img[:, :, ::-1]
data = preprocess(img, args)
batch_input_list.append(data)
img_name = img_path.split('/')[-1]
img_name_list.append(img_name)
cnt += 1
if cnt % args.batch_size == 0 or (idx + 1) == len(image_path_list):
batch_input = np.array(batch_input_list)
b64str, revert_shape = np_to_b64(batch_input)
data = {
"images": b64str,
"revert_params": {
"shape": revert_shape,
"dtype": str(batch_input.dtype)
},
"top_k": args.top_k
}
try:
r = requests.post(
url=args.server_url,
headers=headers,
data=json.dumps(data))
r.raise_for_status
if r.json()["status"] != "000":
msg = r.json()["msg"]
raise Exception(msg)
except Exception as e:
logger.error("{}, in file(s): {} etc.".format(e, img_name_list[
0]))
continue
else:
results = r.json()["results"]
batch_result_list = results["prediction"]
elapse = results["elapse"]
cnt += len(batch_result_list)
predict_time += elapse
for number, result_list in enumerate(batch_result_list):
all_score += result_list["scores"][0]
result_str = ""
for i in range(len(result_list["clas_ids"])):
result_str += "{}: {:.2f}\t".format(
result_list["clas_ids"][i],
result_list["scores"][i])
logger.info("File:{}, The top-{} result(s): {}".format(
img_name_list[number], args.top_k, result_str))
finally:
batch_input_list = []
img_name_list = []
total_time = time.time() - start_time
logger.info("The average time of prediction cost: {:.3f} s/image".format(
predict_time / cnt))
logger.info("The average time cost: {:.3f} s/image".format(total_time /
cnt))
logger.info("The average top-1 score: {:.3f}".format(all_score / cnt))
if __name__ == '__main__':
args = parse_args()
main(args)