PaddleClas/docs/zh_CN/models/DPN_DenseNet.md

2.5 KiB
Raw Blame History

DPN与DenseNet系列

概述

正在持续更新中......

该系列模型的FLOPS、参数量以及fp32预测耗时如下图所示。

所有模型在预测时图像的crop_size设置为224resize_short_size设置为256。

精度、FLOPS和参数量

Models Top1 Top5 Reference
top1
Reference
top5
FLOPS
(G)
Parameters
(M)
DenseNet121 0.757 0.926 0.750 5.690 7.980
DenseNet161 0.786 0.941 0.778 15.490 28.680
DenseNet169 0.768 0.933 0.764 6.740 14.150
DenseNet201 0.776 0.937 0.775 8.610 20.010
DenseNet264 0.780 0.939 0.779 11.540 33.370
DPN68 0.768 0.934 0.764 0.931 4.030 10.780
DPN92 0.799 0.948 0.793 0.946 12.540 36.290
DPN98 0.806 0.951 0.799 0.949 22.220 58.460
DPN107 0.809 0.953 0.802 0.951 35.060 82.970
DPN131 0.807 0.951 0.801 0.949 30.510 75.360

FP32预测速度

Models Crop Size Resize Short Size Batch Size=1
(ms)
DenseNet121 224 256 4.371
DenseNet161 224 256 8.863
DenseNet169 224 256 6.391
DenseNet201 224 256 8.173
DenseNet264 224 256 11.942
DPN68 224 256 11.805
DPN92 224 256 17.840
DPN98 224 256 21.057
DPN107 224 256 28.685
DPN131 224 256 28.083