PaddleClas/docs/zh_CN/fastdeploy/serving/README.md

105 lines
5.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# PaddleClas服务化部署示例
PaddleClas 服务化部署示例是利用FastDeploy Serving搭建的服务化部署示例。FastDeploy Serving是基于Triton Inference Server框架封装的适用于高并发、高吞吐量请求的服务化部署框架是一套可用于实际生产的完备且性能卓越的服务化部署框架.
## 1. 部署环境准备
在服务化部署前,需确认服务化镜像的软硬件环境要求和镜像拉取命令,请参考[FastDeploy服务化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/README_CN.md)
## 2. 启动服务
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/serving
# 如果您希望从PaddleClas下载示例代码请运行
git clone https://github.com/PaddlePaddle/PaddleClas.git
# 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
git checkout develop
cd PaddleClas/deploy/fastdeploy/serving
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# 将配置文件放入预处理目录
mv ResNet50_vd_infer/inference_cls.yaml models/preprocess/1/inference_cls.yaml
# 将模型放入 models/runtime/1目录下, 并重命名为model.pdmodel和model.pdiparams
mv ResNet50_vd_infer/inference.pdmodel models/runtime/1/model.pdmodel
mv ResNet50_vd_infer/inference.pdiparams models/runtime/1/model.pdiparams
# 拉取fastdeploy镜像(x.y.z为镜像版本号需参照serving文档替换为数字)
# GPU镜像
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10
# CPU镜像
docker pull registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-cpu-only-21.10
# 运行容器.容器名字为 fd_serving, 并挂载当前目录为容器的 /serving 目录
nvidia-docker run -it --net=host --name fd_serving -v `pwd`/:/serving registry.baidubce.com/paddlepaddle/fastdeploy:x.y.z-gpu-cuda11.4-trt8.4-21.10 bash
# 启动服务(不设置CUDA_VISIBLE_DEVICES环境变量会拥有所有GPU卡的调度权限)
CUDA_VISIBLE_DEVICES=0 fastdeployserver --model-repository=/serving/models --backend-config=python,shm-default-byte-size=10485760
```
>> **注意**:
>> 拉取其他硬件上的镜像请看[服务化部署主文档](../../../../../serving/README_CN.md)
>> 执行fastdeployserver启动服务出现"Address already in use", 请使用`--grpc-port`指定端口号来启动服务,同时更改客户端示例中的请求端口号.
>> 其他启动参数可以使用 fastdeployserver --help 查看
服务启动成功后, 会有以下输出:
```
......
I0928 04:51:15.784517 206 grpc_server.cc:4117] Started GRPCInferenceService at 0.0.0.0:8001
I0928 04:51:15.785177 206 http_server.cc:2815] Started HTTPService at 0.0.0.0:8000
I0928 04:51:15.826578 206 http_server.cc:167] Started Metrics Service at 0.0.0.0:8002
```
## 3. 客户端请求
在物理机器中执行以下命令发送grpc请求并输出结果
```
#下载测试图片
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
#安装客户端依赖
python3 -m pip install tritonclient\[all\]
# 发送请求
python3 paddlecls_grpc_client.py
```
发送请求成功后会返回json格式的检测结果并打印输出:
```
output_name: CLAS_RESULT
{'label_ids': [153], 'scores': [0.6862289905548096]}
```
## 4. 配置修改
当前默认配置在GPU上运行TensorRT引擎 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md)
## 5. 使用VisualDL进行可视化部署
可以[使用 VisualDL 进行 Serving 可视化部署](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/vdl_management.md)上述启动服务、配置修改以及客户端请求的操作都可以基于VisualDL进行。
通过VisualDL的可视化界面对PaddleClas进行服务化部署只需要如下三步
```text
1. 载入模型库PaddleClas/deploy/fastdeploy/serving/models
2. 下载模型资源文件点击runtime模型点击版本号1添加预训练模型选择图像分类模型ResNet50_vd进行下载。
3. 启动服务:点击启动服务按钮,输入启动参数。
```
<p align="center">
<img src="https://user-images.githubusercontent.com/22424850/211708702-828d8ad8-4e85-457f-9c62-12f53fc81853.gif" width="100%"/>
</p>
## 6. 常见问题
- [如何编写客户端 HTTP/GRPC 请求](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/client.md)
- [如何编译服务化部署镜像](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/compile.md)
- [服务化部署原理及动态Batch介绍](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/demo.md)
- [模型仓库介绍](https://github.com/PaddlePaddle/FastDeploy/blob/develop/serving/docs/zh_CN/model_repository.md)