PaddleClas/tools/infer/predict.py

94 lines
3.1 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.insert(0, ".")
import tools.infer.utils as utils
import numpy as np
import cv2
import time
def predict(args, predictor):
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_handle(input_names[0])
output_names = predictor.get_output_names()
output_tensor = predictor.get_output_handle(output_names[0])
test_num = 500
test_time = 0.0
if not args.enable_benchmark:
# for PaddleHubServing
if args.hubserving:
img = args.image_file
# for predict only
else:
img = cv2.imread(args.image_file)[:, :, ::-1]
assert img is not None, "Error in loading image: {}".format(
args.image_file)
inputs = utils.preprocess(img, args)
inputs = np.expand_dims(
inputs, axis=0).repeat(
args.batch_size, axis=0).copy()
input_tensor.copy_from_cpu(inputs)
predictor.run()
output = output_tensor.copy_to_cpu()
classes, scores = utils.postprocess(output, args)
if args.hubserving:
return classes, scores
print("Current image file: {}".format(args.image_file))
print("\ttop-1 class: {0}".format(classes[0]))
print("\ttop-1 score: {0}".format(scores[0]))
else:
for i in range(0, test_num + 10):
inputs = np.random.rand(args.batch_size, 3, 224,
224).astype(np.float32)
start_time = time.time()
input_tensor.copy_from_cpu(inputs)
predictor.run()
output = output_tensor.copy_to_cpu()
output = output.flatten()
if i >= 10:
test_time += time.time() - start_time
time.sleep(0.01) # sleep for T4 GPU
fp_message = "FP16" if args.use_fp16 else "FP32"
trt_msg = "using tensorrt" if args.use_tensorrt else "not using tensorrt"
print("{0}\t{1}\t{2}\tbatch size: {3}\ttime(ms): {4}".format(
args.model, trt_msg, fp_message, args.batch_size, 1000 * test_time
/ test_num))
def main(args):
if not args.enable_benchmark:
assert args.batch_size == 1
else:
assert args.model is not None
# HALF precission predict only work when using tensorrt
if args.use_fp16 is True:
assert args.use_tensorrt is True
predictor = utils.create_paddle_predictor(args)
predict(args, predictor)
if __name__ == "__main__":
args = utils.parse_args()
main(args)