PaddleClas/ppcls/data/preprocess/ops/random_erasing.py

110 lines
4.0 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code is adapted from https://github.com/zhunzhong07/Random-Erasing, and refer to Timm(https://github.com/rwightman/pytorch-image-models).
# reference: https://arxiv.org/abs/1708.04896
from functools import partial
import math
import random
import numpy as np
class Pixels(object):
def __init__(self, mode="const", mean=[0., 0., 0.]):
self._mode = mode
self._mean = np.array(mean)
def __call__(self, h=224, w=224, c=3, channel_first=False):
if self._mode == "rand":
return np.random.normal(size=(
1, 1, 3)) if not channel_first else np.random.normal(size=(
3, 1, 1))
elif self._mode == "pixel":
return np.random.normal(size=(
h, w, c)) if not channel_first else np.random.normal(size=(
c, h, w))
elif self._mode == "const":
return np.reshape(self._mean, (
1, 1, c)) if not channel_first else np.reshape(self._mean,
(c, 1, 1))
else:
raise Exception(
"Invalid mode in RandomErasing, only support \"const\", \"rand\", \"pixel\""
)
class RandomErasing(object):
"""RandomErasing.
"""
def __init__(self,
EPSILON=0.5,
sl=0.02,
sh=0.4,
r1=0.3,
mean=[0., 0., 0.],
attempt=100,
use_log_aspect=False,
mode='const'):
self.EPSILON = eval(EPSILON) if isinstance(EPSILON, str) else EPSILON
self.sl = eval(sl) if isinstance(sl, str) else sl
self.sh = eval(sh) if isinstance(sh, str) else sh
r1 = eval(r1) if isinstance(r1, str) else r1
self.r1 = (math.log(r1), math.log(1 / r1)) if use_log_aspect else (
r1, 1 / r1)
self.use_log_aspect = use_log_aspect
self.attempt = attempt
self.get_pixels = Pixels(mode, mean)
def __call__(self, img):
if random.random() > self.EPSILON:
return img
for _ in range(self.attempt):
if isinstance(img, np.ndarray):
img_h, img_w, img_c = img.shape
channel_first = False
else:
img_c, img_h, img_w = img.shape
channel_first = True
area = img_h * img_w
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(*self.r1)
if self.use_log_aspect:
aspect_ratio = math.exp(aspect_ratio)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img_w and h < img_h:
pixels = self.get_pixels(h, w, img_c, channel_first)
x1 = random.randint(0, img_h - h)
y1 = random.randint(0, img_w - w)
if img_c == 3:
if channel_first:
img[:, x1:x1 + h, y1:y1 + w] = pixels
else:
img[x1:x1 + h, y1:y1 + w, :] = pixels
else:
if channel_first:
img[0, x1:x1 + h, y1:y1 + w] = pixels[0]
else:
img[x1:x1 + h, y1:y1 + w, 0] = pixels[:, :, 0]
return img
return img