PaddleClas/ppcls/loss/deephashloss.py

150 lines
5.5 KiB
Python

#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
class DSHSDLoss(nn.Layer):
"""
# DSHSD(IEEE ACCESS 2019)
# paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/DSHSD.py
"""
def __init__(self, alpha, multi_label=False):
super(DSHSDLoss, self).__init__()
self.alpha = alpha
self.multi_label = multi_label
def forward(self, input, label):
features = input["features"]
logits = input["logits"]
features_temp1 = paddle.unsqueeze(features, 1)
features_temp2 = paddle.unsqueeze(features, 0)
dist = features_temp1 - features_temp2
dist = paddle.square(dist)
dist = paddle.sum(dist, axis=2)
n_class = logits.shape[1]
labels = paddle.nn.functional.one_hot(label, n_class)
labels = labels.squeeze().astype("float32")
s = paddle.matmul(labels, labels, transpose_y=True)
s = (s == 0).astype("float32")
margin = 2 * features.shape[1]
Ld = (1 - s) / 2 * dist + s / 2 * (margin - dist).clip(min=0)
Ld = Ld.mean()
if self.multi_label:
Lc_temp = (1 + (-logits).exp()).log()
Lc = (logits - labels * logits + Lc_temp).sum(axis=1)
else:
probs = paddle.nn.functional.softmax(logits)
Lc = (-probs.log() * labels).sum(axis=1)
Lc = Lc.mean()
loss = Lc + Ld * self.alpha
return {"dshsdloss": loss}
class LCDSHLoss(nn.Layer):
"""
# paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/LCDSH.py
"""
def __init__(self, n_class, _lambda):
super(LCDSHLoss, self).__init__()
self._lambda = _lambda
self.n_class = n_class
def forward(self, input, label):
features = input["features"]
labels = paddle.nn.functional.one_hot(label, self.n_class)
labels = labels.squeeze().astype("float32")
s = paddle.matmul(labels, labels, transpose_y=True)
s = 2 * (s > 0).astype("float32") - 1
inner_product = paddle.matmul(features, features, transpose_y=True)
inner_product = inner_product * 0.5
inner_product = inner_product.clip(min=-50, max=50)
L1 = paddle.log(1 + paddle.exp(-s * inner_product))
L1 = L1.mean()
binary_features = features.sign()
inner_product_ = paddle.matmul(
binary_features, binary_features, transpose_y=True)
inner_product_ = inner_product_ * 0.5
sigmoid = paddle.nn.Sigmoid()
L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2)
L2 = L2.mean()
loss = L1 + self._lambda * L2
return {"lcdshloss": loss}
class DCHLoss(paddle.nn.Layer):
"""
# paper [Deep Cauchy Hashing for Hamming Space Retrieval]
URL:(http://ise.thss.tsinghua.edu.cn/~mlong/doc/deep-cauchy-hashing-cvpr18.pdf)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/DCH.py
"""
def __init__(self, gamma, _lambda, n_class):
super(DCHLoss, self).__init__()
self.gamma = gamma
self._lambda = _lambda
self.n_class = n_class
def distance(self, feature_i, feature_j):
assert feature_i.shape[1] == feature_j.shape[
1], "feature len of feature_i and feature_j is different, please check whether the featurs are right"
K = feature_i.shape[1]
inner_product = paddle.matmul(feature_i, feature_j, transpose_y=True)
len_i = feature_i.pow(2).sum(axis=1, keepdim=True).pow(0.5)
len_j = feature_j.pow(2).sum(axis=1, keepdim=True).pow(0.5)
norm = paddle.matmul(len_i, len_j, transpose_y=True)
cos = inner_product / norm.clip(min=0.0001)
dist = (1 - cos.clip(max=0.99)) * K / 2
return dist
def forward(self, input, label):
features = input["features"]
labels = paddle.nn.functional.one_hot(label, self.n_class)
labels = labels.squeeze().astype("float32")
s = paddle.matmul(labels, labels, transpose_y=True).astype("float32")
if (1 - s).sum() != 0 and s.sum() != 0:
positive_w = s * s.numel() / s.sum()
negative_w = (1 - s) * s.numel() / (1 - s).sum()
w = positive_w + negative_w
else:
w = 1
dist_matric = self.distance(features, features)
cauchy_loss = w * (s * paddle.log(dist_matric / self.gamma) +
paddle.log(1 + self.gamma / dist_matric))
all_one = paddle.ones_like(features, dtype="float32")
dist_to_one = self.distance(features.abs(), all_one)
quantization_loss = paddle.log(1 + dist_to_one / self.gamma)
loss = cauchy_loss.mean() + self._lambda * quantization_loss.mean()
return {"dchloss": loss}