PaddleClas/ppcls/metric/metrics.py

123 lines
4.9 KiB
Python

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
class TopkAcc(nn.Layer):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
metric_dict = dict()
for k in self.topk:
metric_dict["top{}".format(k)] = paddle.metric.accuracy(
x, label, k=k)
return metric_dict
class mAP(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
choosen_indices = paddle.argsort(similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1,0])
gallery_labels_transpose = paddle.broadcast_to(gallery_labels_transpose, shape=[choosen_indices.shape[0], gallery_labels_transpose.shape[1]])
choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
equal_flag = paddle.cast(equal_flag, 'float32')
acc_sum = paddle.cumsum(equal_flag, axis=1)
div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
precision = paddle.divide(acc_sum, div)
#calc map
precision_mask = paddle.multiply(equal_flag, precision)
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag, axis=1)
metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
return metric_dict
class mINP(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
choosen_indices = paddle.argsort(similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1,0])
gallery_labels_transpose = paddle.broadcast_to(gallery_labels_transpose, shape=[choosen_indices.shape[0], gallery_labels_transpose.shape[1]])
choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices)
tmp = paddle.equal(choosen_label, query_img_id)
tmp = paddle.cast(tmp, 'float64')
#do accumulative sum
div = paddle.arange(tmp.shape[1]).astype("float64") + 2
minus = paddle.divide(tmp, div)
auxilary = paddle.subtract(tmp, minus)
hard_index = paddle.argmax(auxilary, axis=1).astype("float64")
all_INP = paddle.divide(paddle.sum(tmp, axis=1), hard_index)
mINP = paddle.mean(all_INP)
metric_dict["mINP"] = mINP.numpy()[0]
return metric_dict
class Recallk(nn.Layer):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
metric_dict = dict()
#get cmc
choosen_indices = paddle.argsort(similarities_matrix, axis=1, descending=True)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1,0])
gallery_labels_transpose = paddle.broadcast_to(gallery_labels_transpose, shape=[choosen_indices.shape[0], gallery_labels_transpose.shape[1]])
choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
equal_flag = paddle.cast(equal_flag, 'float32')
acc_sum = paddle.cumsum(equal_flag, axis=1)
mask = paddle.greater_than(acc_sum, paddle.to_tensor(0.)).astype("float32")
all_cmc = paddle.mean(mask, axis=0).numpy()
for k in self.topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
return metric_dict
class DistillationTopkAcc(TopkAcc):
def __init__(self, model_key, feature_key=None, topk=(1, 5)):
super().__init__(topk=topk)
self.model_key = model_key
self.feature_key = feature_key
def forward(self, x, label):
x = x[self.model_key]
if self.feature_key is not None:
x = x[self.feature_key]
return super().forward(x, label)