PaddleClas/ppcls/data/dataloader/custom_label_dataset.py
gaotingquan e823f17853 feat: support training image orientation model
add the config of orientation model
add the preprocess op RandomRot90 that can rotate the img and return the orientation
add the CustomLabelDataset that support getting label by preprocess
refactor some preprocess ops to support dict parameter and return dict
2022-09-28 20:01:48 +08:00

89 lines
3.2 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import numpy as np
from ppcls.data.preprocess import transform
from ppcls.utils import logger
from .common_dataset import CommonDataset
class CustomLabelDataset(CommonDataset):
"""CustomLabelDataset
Args:
image_root (str): image root, path to `ILSVRC2012`
sample_list_path (str): path to the file with samples listed.
transform_ops (list, optional): list of transform op(s). Defaults to None.
label_key (str, optional): Defaults to None.
delimiter (str, optional): delimiter. Defaults to None.
"""
def __init__(self,
image_root,
sample_list_path,
transform_ops=None,
label_key=None,
delimiter=None):
self.delimiter = delimiter
super().__init__(image_root, sample_list_path, transform_ops)
if self._transform_ops is None and label_key is not None:
label_key = None
msg = ""
logger.warning(msg)
self.label_key = label_key
def _load_anno(self, seed=None):
assert os.path.exists(
self._cls_path), f"path {self._cls_path} does not exist."
assert os.path.exists(
self._img_root), f"path {self._img_root} does not exist."
self.images = []
with open(self._cls_path) as fd:
lines = fd.readlines()
if seed is not None:
np.random.RandomState(seed).shuffle(lines)
for line in lines:
line = line.strip()
if self.delimiter is not None:
line = line.split(self.delimiter)[0]
self.images.append(os.path.join(self._img_root, line))
assert os.path.exists(self.images[
-1]), f"path {self.images[-1]} does not exist."
def __getitem__(self, idx):
try:
with open(self.images[idx], 'rb') as f:
img = f.read()
if self._transform_ops:
processed_sample = transform({"img": img}, self._transform_ops)
img = processed_sample["img"].transpose((2, 0, 1))
if self.label_key is not None:
label = processed_sample[self.label_key]
sample = (img, label)
return sample
return (img)
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)