PaddleClas/ppcls/arch/utils.py

100 lines
3.6 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import types
import paddle
from difflib import SequenceMatcher
from . import backbone
from typing import Any, Dict, Union
def get_architectures():
"""
get all of model architectures
"""
names = []
for k, v in backbone.__dict__.items():
if isinstance(v, (types.FunctionType, six.class_types)):
names.append(k)
return names
def get_blacklist_model_in_static_mode():
from ppcls.arch.backbone import distilled_vision_transformer
from ppcls.arch.backbone import vision_transformer
blacklist = distilled_vision_transformer.__all__ + vision_transformer.__all__
return blacklist
def similar_architectures(name='', names=[], thresh=0.1, topk=10):
"""
inferred similar architectures
"""
scores = []
for idx, n in enumerate(names):
if n.startswith('__'):
continue
score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
if score > thresh:
scores.append((idx, score))
scores.sort(key=lambda x: x[1], reverse=True)
similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
return similar_names
def get_param_attr_dict(ParamAttr_config: Union[None, bool, Dict[str, Dict]]
) -> Union[None, bool, paddle.ParamAttr]:
"""parse ParamAttr from an dict
Args:
ParamAttr_config (Union[None, bool, Dict[str, Dict]]): ParamAttr configure
Returns:
Union[None, bool, paddle.ParamAttr]: Generated ParamAttr
"""
if ParamAttr_config is None:
return None
if isinstance(ParamAttr_config, bool):
return ParamAttr_config
ParamAttr_dict = {}
if 'initializer' in ParamAttr_config:
initializer_cfg = ParamAttr_config.get('initializer')
if 'name' in initializer_cfg:
initializer_name = initializer_cfg.pop('name')
ParamAttr_dict['initializer'] = getattr(
paddle.nn.initializer, initializer_name)(**initializer_cfg)
else:
raise ValueError(f"'name' must specified in initializer_cfg")
if 'learning_rate' in ParamAttr_config:
# NOTE: only support an single value now
learning_rate_value = ParamAttr_config.get('learning_rate')
if isinstance(learning_rate_value, (int, float)):
ParamAttr_dict['learning_rate'] = learning_rate_value
else:
raise ValueError(
f"learning_rate_value must be float or int, but got {type(learning_rate_value)}"
)
if 'regularizer' in ParamAttr_config:
regularizer_cfg = ParamAttr_config.get('regularizer')
if 'name' in regularizer_cfg:
# L1Decay or L2Decay
regularizer_name = regularizer_cfg.pop('name')
ParamAttr_dict['regularizer'] = getattr(
paddle.regularizer, regularizer_name)(**regularizer_cfg)
else:
raise ValueError(f"'name' must specified in regularizer_cfg")
return paddle.ParamAttr(**ParamAttr_dict)