PaddleClas/ppcls/engine/evaluation/retrieval.py

338 lines
14 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import platform
from typing import Optional
import numpy as np
import paddle
from ppcls.utils import logger
def retrieval_eval(engine, epoch_id=0):
engine.model.eval()
# step1. build gallery
if engine.gallery_query_dataloader is not None:
gallery_feas, gallery_img_id, gallery_unique_id = cal_feature(
engine, name='gallery_query')
query_feas, query_img_id, query_query_id = gallery_feas, gallery_img_id, gallery_unique_id
else:
gallery_feas, gallery_img_id, gallery_unique_id = cal_feature(
engine, name='gallery')
query_feas, query_img_id, query_query_id = cal_feature(
engine, name='query')
# step2. do evaluation
sim_block_size = engine.config["Global"].get("sim_block_size", 64)
sections = [sim_block_size] * (len(query_feas) // sim_block_size)
if len(query_feas) % sim_block_size:
sections.append(len(query_feas) % sim_block_size)
fea_blocks = paddle.split(query_feas, num_or_sections=sections)
if query_query_id is not None:
query_id_blocks = paddle.split(
query_query_id, num_or_sections=sections)
image_id_blocks = paddle.split(query_img_id, num_or_sections=sections)
metric_key = None
if engine.eval_loss_func is None:
metric_dict = {metric_key: 0.}
else:
reranking_flag = engine.config['Global'].get('re_ranking', False)
logger.info(f"re_ranking={reranking_flag}")
metric_dict = dict()
if reranking_flag:
# set the order from small to large
for i in range(len(engine.eval_metric_func.metric_func_list)):
if hasattr(engine.eval_metric_func.metric_func_list[i], 'descending') \
and engine.eval_metric_func.metric_func_list[i].descending is True:
engine.eval_metric_func.metric_func_list[
i].descending = False
logger.warning(
f"re_ranking=True,{engine.eval_metric_func.metric_func_list[i].__class__.__name__}.descending has been set to False"
)
# compute distance matrix(The smaller the value, the more similar)
distmat = re_ranking(
query_feas, gallery_feas, k1=20, k2=6, lambda_value=0.3)
# compute keep mask
query_id_mask = (query_query_id != gallery_unique_id.t())
image_id_mask = (query_img_id != gallery_img_id.t())
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
# set inf(1e9) distance to those exist in gallery
distmat = distmat * keep_mask.astype("float32")
inf_mat = (paddle.logical_not(keep_mask).astype("float32")) * 1e20
distmat = distmat + inf_mat
# compute metric
metric_tmp = engine.eval_metric_func(distmat, query_img_id,
gallery_img_id, keep_mask)
for key in metric_tmp:
metric_dict[key] = metric_tmp[key]
else:
for block_idx, block_fea in enumerate(fea_blocks):
similarity_matrix = paddle.matmul(
block_fea, gallery_feas, transpose_y=True) # [n,m]
if query_query_id is not None:
query_id_block = query_id_blocks[block_idx]
query_id_mask = (query_id_block != gallery_unique_id.t())
image_id_block = image_id_blocks[block_idx]
image_id_mask = (image_id_block != gallery_img_id.t())
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
similarity_matrix = similarity_matrix * keep_mask.astype(
"float32")
else:
keep_mask = None
metric_tmp = engine.eval_metric_func(
similarity_matrix, image_id_blocks[block_idx],
gallery_img_id, keep_mask)
for key in metric_tmp:
if key not in metric_dict:
metric_dict[key] = metric_tmp[key] * block_fea.shape[
0] / len(query_feas)
else:
metric_dict[key] += metric_tmp[key] * block_fea.shape[
0] / len(query_feas)
metric_info_list = []
for key in metric_dict:
if metric_key is None:
metric_key = key
metric_info_list.append("{}: {:.5f}".format(key, metric_dict[key]))
metric_msg = ", ".join(metric_info_list)
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
return metric_dict[metric_key]
def cal_feature(engine, name='gallery'):
has_unique_id = False
all_unique_id = None
if name == 'gallery':
dataloader = engine.gallery_dataloader
elif name == 'query':
dataloader = engine.query_dataloader
elif name == 'gallery_query':
dataloader = engine.gallery_query_dataloader
else:
raise RuntimeError("Only support gallery or query dataset")
batch_feas_list = []
img_id_list = []
unique_id_list = []
max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len(
dataloader)
for idx, batch in enumerate(dataloader): # load is very time-consuming
if idx >= max_iter:
break
if idx % engine.config["Global"]["print_batch_step"] == 0:
logger.info(
f"{name} feature calculation process: [{idx}/{len(dataloader)}]"
)
if engine.use_dali:
batch = [
paddle.to_tensor(batch[0]['data']),
paddle.to_tensor(batch[0]['label'])
]
batch = [paddle.to_tensor(x) for x in batch]
batch[1] = batch[1].reshape([-1, 1]).astype("int64")
if len(batch) == 3:
has_unique_id = True
batch[2] = batch[2].reshape([-1, 1]).astype("int64")
if engine.amp and engine.amp_eval:
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=engine.amp_level):
out = engine.model(batch[0], batch[1])
else:
out = engine.model(batch[0], batch[1])
if "Student" in out:
out = out["Student"]
# get features
if engine.config["Global"].get("retrieval_feature_from",
"features") == "features":
# use neck's output as features
batch_feas = out["features"]
else:
# use backbone's output as features
batch_feas = out["backbone"]
# do norm
if engine.config["Global"].get("feature_normalize", True):
feas_norm = paddle.sqrt(
paddle.sum(paddle.square(batch_feas), axis=1, keepdim=True))
batch_feas = paddle.divide(batch_feas, feas_norm)
# do binarize
if engine.config["Global"].get("feature_binarize") == "round":
batch_feas = paddle.round(batch_feas).astype("float32") * 2.0 - 1.0
if engine.config["Global"].get("feature_binarize") == "sign":
batch_feas = paddle.sign(batch_feas).astype("float32")
if paddle.distributed.get_world_size() > 1:
batch_feas_gather = []
img_id_gather = []
unique_id_gather = []
paddle.distributed.all_gather(batch_feas_gather, batch_feas)
paddle.distributed.all_gather(img_id_gather, batch[1])
batch_feas_list.append(paddle.concat(batch_feas_gather))
img_id_list.append(paddle.concat(img_id_gather))
if has_unique_id:
paddle.distributed.all_gather(unique_id_gather, batch[2])
unique_id_list.append(paddle.concat(unique_id_gather))
else:
batch_feas_list.append(batch_feas)
img_id_list.append(batch[1])
if has_unique_id:
unique_id_list.append(batch[2])
if engine.use_dali:
dataloader.reset()
all_feas = paddle.concat(batch_feas_list)
all_img_id = paddle.concat(img_id_list)
if has_unique_id:
all_unique_id = paddle.concat(unique_id_list)
# just for DistributedBatchSampler issue: repeat sampling
total_samples = len(
dataloader.dataset) if not engine.use_dali else dataloader.size
all_feas = all_feas[:total_samples]
all_img_id = all_img_id[:total_samples]
if has_unique_id:
all_unique_id = all_unique_id[:total_samples]
logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
name, all_feas.shape))
return all_feas, all_img_id, all_unique_id
def re_ranking(query_feas: paddle.Tensor,
gallery_feas: paddle.Tensor,
k1: int=20,
k2: int=6,
lambda_value: int=0.5,
local_distmat: Optional[np.ndarray]=None,
only_local: bool=False) -> paddle.Tensor:
"""re-ranking, most computed with numpy
code heavily based on
https://github.com/michuanhaohao/reid-strong-baseline/blob/3da7e6f03164a92e696cb6da059b1cd771b0346d/utils/reid_metric.py
Args:
query_feas (paddle.Tensor): query features, [num_query, num_features]
gallery_feas (paddle.Tensor): gallery features, [num_gallery, num_features]
k1 (int, optional): k1. Defaults to 20.
k2 (int, optional): k2. Defaults to 6.
lambda_value (int, optional): lambda. Defaults to 0.5.
local_distmat (Optional[np.ndarray], optional): local_distmat. Defaults to None.
only_local (bool, optional): only_local. Defaults to False.
Returns:
paddle.Tensor: final_dist matrix after re-ranking, [num_query, num_gallery]
"""
query_num = query_feas.shape[0]
all_num = query_num + gallery_feas.shape[0]
if only_local:
original_dist = local_distmat
else:
feat = paddle.concat([query_feas, gallery_feas])
logger.info('using GPU to compute original distance')
# L2 distance
distmat = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]) + \
paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]).t()
distmat = distmat.addmm(x=feat, y=feat.t(), alpha=-2.0, beta=1.0)
original_dist = distmat.cpu().numpy()
del feat
if local_distmat is not None:
original_dist = original_dist + local_distmat
gallery_num = original_dist.shape[0]
original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
V = np.zeros_like(original_dist).astype(np.float16)
initial_rank = np.argsort(original_dist).astype(np.int32)
logger.info('starting re_ranking')
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate, :int(
np.around(k1 / 2)) + 1]
candidate_backward_k_neigh_index = initial_rank[
candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1]
fi_candidate = np.where(
candidate_backward_k_neigh_index == candidate)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[
fi_candidate]
if len(
np.intersect1d(candidate_k_reciprocal_index,
k_reciprocal_index)) > 2 / 3 * len(
candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(
k_reciprocal_expansion_index, candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
if k2 != 1:
V_qe = np.zeros_like(V, dtype=np.float16)
for i in range(all_num):
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(gallery_num):
invIndex.append(np.where(V[:, i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
for i in range(query_num):
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16)
indNonZero = np.where(V[i, :] != 0)[0]
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
V[i, indNonZero[j]], V[indImages[j], indNonZero[j]])
jaccard_dist[i] = 1 - temp_min / (2 - temp_min)
final_dist = jaccard_dist * (1 - lambda_value
) + original_dist * lambda_value
del original_dist
del V
del jaccard_dist
final_dist = final_dist[:query_num, query_num:]
final_dist = paddle.to_tensor(final_dist)
return final_dist