PaddleClas/tools/export_model.py

79 lines
2.4 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
import paddle
import paddle.nn as nn
from ppcls.utils import config
from ppcls.engine.trainer import Trainer
from ppcls.arch import build_model
from ppcls.utils.save_load import load_dygraph_pretrain
class ClasModel(nn.Layer):
"""
ClasModel: add softmax onto the model
"""
def __init__(self, config):
super().__init__()
self.base_model = build_model(config)
self.softmax = nn.Softmax(axis=-1)
def eval(self):
self.training = False
for layer in self.sublayers():
layer.training = False
layer.eval()
def forward(self, x):
x = self.base_model(x)
x = self.softmax(x)
return x
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(args.config, overrides=args.override, show=True)
# set device
assert config["Global"]["device"] in ["cpu", "gpu", "xpu"]
device = paddle.set_device(config["Global"]["device"])
model = ClasModel(config["Arch"])
if config["Global"]["pretrained_model"] is not None:
load_dygraph_pretrain(model.base_model,
config["Global"]["pretrained_model"])
model.eval()
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None] + config["Global"]["image_shape"],
dtype='float32')
])
paddle.jit.save(model,
os.path.join(config["Global"]["save_inference_dir"],
"inference"))