101 lines
3.4 KiB
Python
101 lines
3.4 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
sys.path.insert(0, ".")
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
import paddle.nn as nn
|
|
from paddlehub.module.module import moduleinfo, serving
|
|
|
|
from hubserving.clas.params import get_default_confg
|
|
from python.predict_cls import ClsPredictor
|
|
from utils import config
|
|
from utils.encode_decode import b64_to_np
|
|
|
|
|
|
@moduleinfo(
|
|
name="clas_system",
|
|
version="1.0.0",
|
|
summary="class system service",
|
|
author="paddle-dev",
|
|
author_email="paddle-dev@baidu.com",
|
|
type="cv/class")
|
|
class ClasSystem(nn.Layer):
|
|
def __init__(self, use_gpu=None, enable_mkldnn=None):
|
|
"""
|
|
initialize with the necessary elements
|
|
"""
|
|
self._config = self._load_config(
|
|
use_gpu=use_gpu, enable_mkldnn=enable_mkldnn)
|
|
self.cls_predictor = ClsPredictor(self._config)
|
|
|
|
def _load_config(self, use_gpu=None, enable_mkldnn=None):
|
|
cfg = get_default_confg()
|
|
cfg = config.AttrDict(cfg)
|
|
config.create_attr_dict(cfg)
|
|
if use_gpu is not None:
|
|
cfg.Global.use_gpu = use_gpu
|
|
if enable_mkldnn is not None:
|
|
cfg.Global.enable_mkldnn = enable_mkldnn
|
|
cfg.enable_benchmark = False
|
|
if cfg.Global.use_gpu:
|
|
try:
|
|
_places = os.environ["CUDA_VISIBLE_DEVICES"]
|
|
int(_places[0])
|
|
print("Use GPU, GPU Memery:{}".format(cfg.Global.gpu_mem))
|
|
print("CUDA_VISIBLE_DEVICES: ", _places)
|
|
except:
|
|
raise RuntimeError(
|
|
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
|
|
)
|
|
else:
|
|
print("Use CPU")
|
|
print("Enable MKL-DNN") if enable_mkldnn else None
|
|
return cfg
|
|
|
|
def predict(self, inputs):
|
|
if not isinstance(inputs, list):
|
|
raise Exception(
|
|
"The input data is inconsistent with expectations.")
|
|
|
|
starttime = time.time()
|
|
outputs = self.cls_predictor.predict(inputs)
|
|
elapse = time.time() - starttime
|
|
return {"prediction": outputs, "elapse": elapse}
|
|
|
|
@serving
|
|
def serving_method(self, images, revert_params):
|
|
"""
|
|
Run as a service.
|
|
"""
|
|
input_data = b64_to_np(images, revert_params)
|
|
results = self.predict(inputs=list(input_data))
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import cv2
|
|
import paddlehub as hub
|
|
|
|
module = hub.Module(name="clas_system")
|
|
img_path = "./hubserving/ILSVRC2012_val_00006666.JPEG"
|
|
img = cv2.imread(img_path)[:, :, ::-1]
|
|
img = cv2.resize(img, (224, 224)).transpose((2, 0, 1))
|
|
res = module.predict([img.astype(np.float32)])
|
|
print("The returned result of {}: {}".format(img_path, res))
|