PaddleClas/deploy/hubserving/clas/module.py

101 lines
3.4 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.insert(0, ".")
import time
import numpy as np
import paddle.nn as nn
from paddlehub.module.module import moduleinfo, serving
from hubserving.clas.params import get_default_confg
from python.predict_cls import ClsPredictor
from utils import config
from utils.encode_decode import b64_to_np
@moduleinfo(
name="clas_system",
version="1.0.0",
summary="class system service",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/class")
class ClasSystem(nn.Layer):
def __init__(self, use_gpu=None, enable_mkldnn=None):
"""
initialize with the necessary elements
"""
self._config = self._load_config(
use_gpu=use_gpu, enable_mkldnn=enable_mkldnn)
self.cls_predictor = ClsPredictor(self._config)
def _load_config(self, use_gpu=None, enable_mkldnn=None):
cfg = get_default_confg()
cfg = config.AttrDict(cfg)
config.create_attr_dict(cfg)
if use_gpu is not None:
cfg.Global.use_gpu = use_gpu
if enable_mkldnn is not None:
cfg.Global.enable_mkldnn = enable_mkldnn
cfg.enable_benchmark = False
if cfg.Global.use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
print("Use GPU, GPU Memery:{}".format(cfg.Global.gpu_mem))
print("CUDA_VISIBLE_DEVICES: ", _places)
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
else:
print("Use CPU")
print("Enable MKL-DNN") if enable_mkldnn else None
return cfg
def predict(self, inputs):
if not isinstance(inputs, list):
raise Exception(
"The input data is inconsistent with expectations.")
starttime = time.time()
outputs = self.cls_predictor.predict(inputs)
elapse = time.time() - starttime
return {"prediction": outputs, "elapse": elapse}
@serving
def serving_method(self, images, revert_params):
"""
Run as a service.
"""
input_data = b64_to_np(images, revert_params)
results = self.predict(inputs=list(input_data))
return results
if __name__ == "__main__":
import cv2
import paddlehub as hub
module = hub.Module(name="clas_system")
img_path = "./hubserving/ILSVRC2012_val_00006666.JPEG"
img = cv2.imread(img_path)[:, :, ::-1]
img = cv2.resize(img, (224, 224)).transpose((2, 0, 1))
res = module.predict([img.astype(np.float32)])
print("The returned result of {}: {}".format(img_path, res))