120 lines
4.0 KiB
Python
120 lines
4.0 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import os
|
|
|
|
from paddle.io import Dataset
|
|
from paddle.vision import transforms
|
|
import cv2
|
|
import warnings
|
|
|
|
from ppcls.data import preprocess
|
|
from ppcls.data.preprocess import transform
|
|
from ppcls.data.preprocess.ops.operators import DecodeImage
|
|
from ppcls.utils import logger
|
|
|
|
|
|
def create_operators(params):
|
|
"""
|
|
create operators based on the config
|
|
Args:
|
|
params(list): a dict list, used to create some operators
|
|
"""
|
|
assert isinstance(params, list), ('operator config should be a list')
|
|
ops = []
|
|
for operator in params:
|
|
assert isinstance(operator,
|
|
dict) and len(operator) == 1, "yaml format error"
|
|
op_name = list(operator)[0]
|
|
param = {} if operator[op_name] is None else operator[op_name]
|
|
op = getattr(preprocess, op_name)(**param)
|
|
ops.append(op)
|
|
|
|
return ops
|
|
|
|
|
|
class MultiScaleDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
image_root,
|
|
cls_label_path,
|
|
transform_ops=None, ):
|
|
self._img_root = image_root
|
|
self._cls_path = cls_label_path
|
|
self.transform_ops = transform_ops
|
|
# if transform_ops:
|
|
# self._transform_ops = create_operators(transform_ops)
|
|
|
|
self.images = []
|
|
self.labels = []
|
|
self._load_anno()
|
|
|
|
def _load_anno(self, seed=None):
|
|
assert os.path.exists(self._cls_path)
|
|
assert os.path.exists(self._img_root)
|
|
self.images = []
|
|
self.labels = []
|
|
|
|
with open(self._cls_path) as fd:
|
|
lines = fd.readlines()
|
|
if seed is not None:
|
|
np.random.RandomState(seed).shuffle(lines)
|
|
for l in lines:
|
|
l = l.strip().split(" ")
|
|
self.images.append(os.path.join(self._img_root, l[0]))
|
|
self.labels.append(np.int64(l[1]))
|
|
assert os.path.exists(self.images[-1])
|
|
|
|
|
|
def __getitem__(self, properties):
|
|
# properites is a tuple, contains (width, height, index)
|
|
img_width = properties[0]
|
|
img_height = properties[1]
|
|
index = properties[2]
|
|
has_crop = False
|
|
if self.transform_ops:
|
|
for i in range(len(self.transform_ops)):
|
|
op = self.transform_ops[i]
|
|
if 'RandCropImage' in op:
|
|
warnings.warn("Multi scale dataset will crop image according to the multi scale resolution")
|
|
self.transform_ops[i]['RandCropImage'] = {'size': img_width}
|
|
has_crop = True
|
|
if has_crop == False:
|
|
raise RuntimeError("Multi scale dateset requests RandCropImage")
|
|
self._transform_ops = create_operators(self.transform_ops)
|
|
|
|
try:
|
|
with open(self.images[index], 'rb') as f:
|
|
img = f.read()
|
|
if self._transform_ops:
|
|
img = transform(img, self._transform_ops)
|
|
img = img.transpose((2, 0, 1))
|
|
return (img, self.labels[index])
|
|
|
|
except Exception as ex:
|
|
logger.error("Exception occured when parse line: {} with msg: {}".
|
|
format(self.images[index], ex))
|
|
rnd_idx = np.random.randint(self.__len__())
|
|
return self.__getitem__(rnd_idx)
|
|
|
|
def __len__(self):
|
|
return len(self.images)
|
|
|
|
@property
|
|
def class_num(self):
|
|
return len(set(self.labels))
|