208 lines
6.4 KiB
Python
208 lines
6.4 KiB
Python
import paddle
|
|
from paddle import ParamAttr
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|
from paddle.nn.initializer import Uniform
|
|
|
|
import math
|
|
|
|
__all__ = ['GoogLeNet']
|
|
|
|
|
|
def xavier(channels, filter_size, name):
|
|
stdv = (3.0 / (filter_size**2 * channels))**0.5
|
|
param_attr = ParamAttr(
|
|
initializer=Uniform(-stdv, stdv), name=name + "_weights")
|
|
return param_attr
|
|
|
|
|
|
class ConvLayer(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None,
|
|
name=None):
|
|
super(ConvLayer, self).__init__()
|
|
|
|
self._conv = Conv2D(
|
|
in_channels=num_channels,
|
|
out_channels=num_filters,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=groups,
|
|
weight_attr=ParamAttr(name=name + "_weights"),
|
|
bias_attr=False)
|
|
|
|
def forward(self, inputs):
|
|
y = self._conv(inputs)
|
|
return y
|
|
|
|
|
|
class Inception(nn.Layer):
|
|
def __init__(self,
|
|
input_channels,
|
|
output_channels,
|
|
filter1,
|
|
filter3R,
|
|
filter3,
|
|
filter5R,
|
|
filter5,
|
|
proj,
|
|
name=None):
|
|
super(Inception, self).__init__()
|
|
|
|
self._conv1 = ConvLayer(
|
|
input_channels, filter1, 1, name="inception_" + name + "_1x1")
|
|
self._conv3r = ConvLayer(
|
|
input_channels,
|
|
filter3R,
|
|
1,
|
|
name="inception_" + name + "_3x3_reduce")
|
|
self._conv3 = ConvLayer(
|
|
filter3R, filter3, 3, name="inception_" + name + "_3x3")
|
|
self._conv5r = ConvLayer(
|
|
input_channels,
|
|
filter5R,
|
|
1,
|
|
name="inception_" + name + "_5x5_reduce")
|
|
self._conv5 = ConvLayer(
|
|
filter5R, filter5, 5, name="inception_" + name + "_5x5")
|
|
self._pool = MaxPool2D(kernel_size=3, stride=1, padding=1)
|
|
|
|
self._convprj = ConvLayer(
|
|
input_channels, proj, 1, name="inception_" + name + "_3x3_proj")
|
|
|
|
def forward(self, inputs):
|
|
conv1 = self._conv1(inputs)
|
|
|
|
conv3r = self._conv3r(inputs)
|
|
conv3 = self._conv3(conv3r)
|
|
|
|
conv5r = self._conv5r(inputs)
|
|
conv5 = self._conv5(conv5r)
|
|
|
|
pool = self._pool(inputs)
|
|
convprj = self._convprj(pool)
|
|
|
|
cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1)
|
|
cat = F.relu(cat)
|
|
return cat
|
|
|
|
|
|
class GoogLeNetDY(nn.Layer):
|
|
def __init__(self, class_dim=1000):
|
|
super(GoogLeNetDY, self).__init__()
|
|
self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
|
|
self._pool = MaxPool2D(kernel_size=3, stride=2)
|
|
self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
|
|
self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")
|
|
|
|
self._ince3a = Inception(
|
|
192, 192, 64, 96, 128, 16, 32, 32, name="ince3a")
|
|
self._ince3b = Inception(
|
|
256, 256, 128, 128, 192, 32, 96, 64, name="ince3b")
|
|
|
|
self._ince4a = Inception(
|
|
480, 480, 192, 96, 208, 16, 48, 64, name="ince4a")
|
|
self._ince4b = Inception(
|
|
512, 512, 160, 112, 224, 24, 64, 64, name="ince4b")
|
|
self._ince4c = Inception(
|
|
512, 512, 128, 128, 256, 24, 64, 64, name="ince4c")
|
|
self._ince4d = Inception(
|
|
512, 512, 112, 144, 288, 32, 64, 64, name="ince4d")
|
|
self._ince4e = Inception(
|
|
528, 528, 256, 160, 320, 32, 128, 128, name="ince4e")
|
|
|
|
self._ince5a = Inception(
|
|
832, 832, 256, 160, 320, 32, 128, 128, name="ince5a")
|
|
self._ince5b = Inception(
|
|
832, 832, 384, 192, 384, 48, 128, 128, name="ince5b")
|
|
|
|
self._pool_5 = AvgPool2D(kernel_size=7, stride=7)
|
|
|
|
self._drop = Dropout(p=0.4, mode="downscale_in_infer")
|
|
self._fc_out = Linear(
|
|
1024,
|
|
class_dim,
|
|
weight_attr=xavier(1024, 1, "out"),
|
|
bias_attr=ParamAttr(name="out_offset"))
|
|
self._pool_o1 = AvgPool2D(kernel_size=5, stride=3)
|
|
self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
|
|
self._fc_o1 = Linear(
|
|
1152,
|
|
1024,
|
|
weight_attr=xavier(2048, 1, "fc_o1"),
|
|
bias_attr=ParamAttr(name="fc_o1_offset"))
|
|
self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer")
|
|
self._out1 = Linear(
|
|
1024,
|
|
class_dim,
|
|
weight_attr=xavier(1024, 1, "out1"),
|
|
bias_attr=ParamAttr(name="out1_offset"))
|
|
self._pool_o2 = AvgPool2D(kernel_size=5, stride=3)
|
|
self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
|
|
self._fc_o2 = Linear(
|
|
1152,
|
|
1024,
|
|
weight_attr=xavier(2048, 1, "fc_o2"),
|
|
bias_attr=ParamAttr(name="fc_o2_offset"))
|
|
self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
|
|
self._out2 = Linear(
|
|
1024,
|
|
class_dim,
|
|
weight_attr=xavier(1024, 1, "out2"),
|
|
bias_attr=ParamAttr(name="out2_offset"))
|
|
|
|
def forward(self, inputs):
|
|
x = self._conv(inputs)
|
|
x = self._pool(x)
|
|
x = self._conv_1(x)
|
|
x = self._conv_2(x)
|
|
x = self._pool(x)
|
|
|
|
x = self._ince3a(x)
|
|
x = self._ince3b(x)
|
|
x = self._pool(x)
|
|
|
|
ince4a = self._ince4a(x)
|
|
x = self._ince4b(ince4a)
|
|
x = self._ince4c(x)
|
|
ince4d = self._ince4d(x)
|
|
x = self._ince4e(ince4d)
|
|
x = self._pool(x)
|
|
|
|
x = self._ince5a(x)
|
|
ince5b = self._ince5b(x)
|
|
|
|
x = self._pool_5(ince5b)
|
|
x = self._drop(x)
|
|
x = paddle.squeeze(x, axis=[2, 3])
|
|
out = self._fc_out(x)
|
|
|
|
x = self._pool_o1(ince4a)
|
|
x = self._conv_o1(x)
|
|
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
|
|
x = self._fc_o1(x)
|
|
x = F.relu(x)
|
|
x = self._drop_o1(x)
|
|
out1 = self._out1(x)
|
|
|
|
x = self._pool_o2(ince4d)
|
|
x = self._conv_o2(x)
|
|
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
|
|
x = self._fc_o2(x)
|
|
x = self._drop_o2(x)
|
|
out2 = self._out2(x)
|
|
return [out, out1, out2]
|
|
|
|
|
|
def GoogLeNet(**args):
|
|
model = GoogLeNetDY(**args)
|
|
return model
|