PaddleClas/README_en.md

154 lines
8.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

[简体中文](README_ch.md) | English
# PaddleClas
## Introduction
PaddleClas is an image classification and image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios.
<div align="center">
<img src="./docs/images/class_simple_en.gif" width = "600" />
PULC demo images
</div>
&nbsp;
<div align="center">
<img src="./docs/images/recognition.gif" width = "400" />
PP-ShiTu demo images
</div>
**Recent updates**
- 2022.6.15 Release [**P**ractical **U**ltra **L**ight-weight image **C**lassification solutions](./docs/en/PULC/PULC_quickstart_en.md). PULC models inference within 3ms on CPU devices, with accuracy comparable with SwinTransformer. We also release 9 practical models covering pedestrian, vehicle and OCR.
- 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormer](https://arxiv.org/pdf/2204.02557.pdf).
- 2021.09.17 Add PP-LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs.
For the introduction of PP-LCNet, please refer to [paper](https://arxiv.org/pdf/2109.15099.pdf) or [PP-LCNet model introduction](docs/en/models/PP-LCNet_en.md). The metrics and pretrained model are available [here](docs/en/ImageNet_models_en.md).
- 2021.06.29 Add Swin-transformer series modelHighest top1 acc on ImageNet1k dataset reaches 87.2%, training, evaluation and inference are all supported. Pretrained models can be downloaded [here](docs/en/models/models_intro_en.md).
- 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
- [more](./docs/en/update_history_en.md)
## Features
PaddleClas release PP-HGNet、PP-LCNetv2、 PP-LCNet and **S**imple **S**emi-supervised **L**abel **D**istillation algorithms, and support plenty of
image classification and image recognition algorithms.
Based on th algorithms above, PaddleClas release PP-ShiTu image recognition system and [**P**ractical **U**ltra **L**ight-weight image **C**lassification solutions](docs/en/PULC/PULC_quickstart_en.md).
![](https://user-images.githubusercontent.com/19523330/173539361-68cf7ab1-7e3b-4e5e-b00f-1500719bd2a2.png)
## Welcome to Join the Technical Exchange Group
* You can also scan the QR code below to join the PaddleClas QQ group and WeChat group (add and replay "C") to get more efficient answers to your questions and to communicate with developers from all walks of life. We look forward to hearing from you.
<div align="center">
<img src="https://user-images.githubusercontent.com/80816848/164383225-e375eb86-716e-41b4-a9e0-4b8a3976c1aa.jpg" width="200"/>
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width="200"/>
</div>
## Quick Start
Quick experience of PP-ShiTu image recognition system[Link](./docs/en/tutorials/quick_start_recognition_en.md)
Quick experience of **P**ractical **U**ltra **L**ight-weight image **C**lassification models[Link](docs/en/PULC/PULC_quickstart.md)
## Tutorials
- [Quick Installation](./docs/en/tutorials/install_en.md)
- [Practical Ultra Light-weight image Classification solutions](./docs/en/PULC/PULC_quickstart_en.md)
- [Quick Start of Recognition](./docs/en/tutorials/quick_start_recognition_en.md)
- [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems)
- [Demo images](#Demo_images)
- Algorithms Introduction
- [Backbone Network and Pre-trained Model Library](./docs/en/ImageNet_models_en.md)
- [Mainbody Detection](./docs/en/application/mainbody_detection_en.md)
- [Image Classification](./docs/en/tutorials/image_classification_en.md)
- [Feature Learning](./docs/en/application/feature_learning_en.md)
- [Product Recognition](./docs/en/application/product_recognition_en.md)
- [Vehicle Recognition](./docs/en/application/vehicle_recognition_en.md)
- [Logo Recognition](./docs/en/application/logo_recognition_en.md)
- [Animation Character Recognition](./docs/en/application/cartoon_character_recognition_en.md)
- [Vector Search](./deploy/vector_search/README.md)
- Models Training/Evaluation
- [Image Classification](./docs/en/tutorials/getting_started_en.md)
- [Feature Learning](./docs/en/tutorials/getting_started_retrieval_en.md)
- Inference Model Prediction
- [Python Inference](./docs/en/inference.md)
- [C++ Classfication Inference](./deploy/cpp/readme_en.md) [C++ PP-ShiTu Inference](deploy/cpp_shitu/readme_en.md)
- Model Deploy (only support classification for now, recognition coming soon)
- [Hub Serving Deployment](./deploy/hubserving/readme_en.md)
- [Mobile Deployment](./deploy/lite/readme_en.md)
- [Inference Using whl](./docs/en/whl_en.md)
- Advanced Tutorial
- [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
- [Model Quantization](./docs/en/extension/paddle_quantization_en.md)
- [Data Augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
- [License](#License)
- [Contribution](#Contribution)
<a name="Introduction_to_PULC"></a>
## Introduction to Practical Ultra Light-weight image Classification solutions
<div align="center">
<img src="https://user-images.githubusercontent.com/19523330/173011854-b10fcd7a-b799-4dfd-a1cf-9504952a3c44.png" width = "800" />
</div>
PULC solutions consists of PP-LCNet light-weight backbone, SSLD pretrained models, Ensemble of Data Augmentation strategy and SKL-UGI knowledge distillation.
PULC models inference within 3ms on CPU devices, with accuracy comparable with SwinTransformer. We also release 9 practical models covering pedestrian, vehicle and OCR.
<a name="Introduction_to_Image_Recognition_Systems"></a>
## Introduction to Image Recognition Systems
<div align="center">
<img src="./docs/images/structure.jpg" width = "800" />
</div>
Image recognition can be divided into three steps:
- 1Identify region proposal for target objects through a detection model
- 2Extract features for each region proposal;
- 3Search features in the retrieval database and output results;
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
## PULC demo images
<div align="center">
<img src="docs/images/classification_en.gif">
</div>
<a name="Rec_Demo_images"></a>
## Image Recognition Demo images [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images)
- Product recognition
<div align="center">
<img src="https://user-images.githubusercontent.com/18028216/122769644-51604f80-d2d7-11eb-8290-c53b12a5c1f6.gif" width = "400" />
</div>
- Cartoon character recognition
<div align="center">
<img src="https://user-images.githubusercontent.com/18028216/122769746-6b019700-d2d7-11eb-86df-f1d710999ba6.gif" width = "400" />
</div>
- Logo recognition
<div align="center">
<img src="https://user-images.githubusercontent.com/18028216/122769837-7fde2a80-d2d7-11eb-9b69-04140e9d785f.gif" width = "400" />
</div>
- Car recognition
<div align="center">
<img src="https://user-images.githubusercontent.com/18028216/122769916-8ec4dd00-d2d7-11eb-8c60-42d89e25030c.gif" width = "400" />
</div>
<a name="License"></a>
## License
PaddleClas is released under the Apache 2.0 license <a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>
<a name="Contribution"></a>
## Contribution
Contributions are highly welcomed and we would really appreciate your feedback!!
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
- Thank [FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563) to parse and summarize the PaddleClas code.