PaddleClas/ppcls/data/dataloader/cifar.py

126 lines
5.2 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import cv2
from ppcls.data import preprocess
from ppcls.data.preprocess import transform
from ppcls.data.dataloader.common_dataset import create_operators
from paddle.vision.datasets import Cifar10 as Cifar10_paddle
from paddle.vision.datasets import Cifar100 as Cifar100_paddle
class Cifar10(Cifar10_paddle):
def __init__(self,
data_file=None,
mode='train',
download=True,
backend='cv2',
sample_per_label=None,
expand_labels=1,
transform_ops=None,
transform_ops_weak=None,
transform_ops_strong=None,
transform_ops_strong2=None):
super().__init__(data_file, mode, None, download, backend)
assert isinstance(expand_labels, int)
self._transform_ops = create_operators(transform_ops)
self._transform_ops_weak = create_operators(transform_ops_weak)
self._transform_ops_strong = create_operators(transform_ops_strong)
self._transform_ops_strong2 = create_operators(transform_ops_strong2)
self.class_num = 10
labels = []
for x in self.data:
labels.append(x[1])
labels = np.array(labels)
if isinstance(sample_per_label, int):
index = []
for i in range(self.class_num):
idx = np.where(labels == i)[0]
idx = np.random.choice(idx, sample_per_label, False)
index.extend(idx)
index = index * expand_labels
data = [self.data[x] for x in index]
self.data = data
def __getitem__(self, idx):
(image, label) = super().__getitem__(idx)
if self._transform_ops:
image1 = transform(image, self._transform_ops)
image1 = image1.transpose((2, 0, 1))
return (image1, np.int64(label))
elif self._transform_ops_weak and self._transform_ops_strong and self._transform_ops_strong2:
image2 = transform(image, self._transform_ops_weak)
image2 = image2.transpose((2, 0, 1))
image3 = transform(image, self._transform_ops_strong)
image3 = image3.transpose((2, 0, 1))
image4 = transform(image, self._transform_ops_strong2)
image4 = image4.transpose((2, 0, 1))
return (image2, image3, image4, np.int64(label))
elif self._transform_ops_weak and self._transform_ops_strong:
image2 = transform(image, self._transform_ops_weak)
image2 = image2.transpose((2, 0, 1))
image3 = transform(image, self._transform_ops_strong)
image3 = image3.transpose((2, 0, 1))
return (image2, image3, np.int64(label))
class Cifar100(Cifar100_paddle):
def __init__(self,
data_file=None,
mode='train',
download=True,
backend='pil',
sample_per_label=None,
expand_labels=1,
transform_ops=None,
transform_ops_weak=None,
transform_ops_strong=None):
super().__init__(data_file, mode, None, download, backend)
assert isinstance(expand_labels, int)
self._transform_ops = create_operators(transform_ops)
self._transform_ops_weak = create_operators(transform_ops_weak)
self._transform_ops_strong = create_operators(transform_ops_strong)
self.class_num = 100
labels = []
for x in self.data:
labels.append(x[1])
labels = np.array(labels)
if isinstance(sample_per_label, int):
index = []
for i in range(self.class_num):
idx = np.where(labels == i)[0]
idx = np.random.choice(idx, sample_per_label, False)
index.extend(idx)
index = index * expand_labels
data = [self.data[x] for x in index]
self.data = data
def __getitem__(self, idx):
(image, label) = super().__getitem__(idx)
if self._transform_ops:
image1 = transform(image, self._transform_ops)
image1 = image1.transpose((2, 0, 1))
return (image1, np.int64(label))
elif self._transform_ops_weak and self._transform_ops_strong:
image2 = transform(image, self._transform_ops_weak)
image2 = image2.transpose((2, 0, 1))
image3 = transform(image, self._transform_ops_strong)
image3 = image3.transpose((2, 0, 1))
return (image2, image3, np.int64(label))