PaddleOCR/ppocr/losses/basic_loss.py

248 lines
7.8 KiB
Python
Raw Permalink Normal View History

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2021-06-02 16:31:57 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2021-06-02 16:31:57 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2021-06-02 16:31:57 +08:00
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss
class CELoss(nn.Layer):
2021-06-03 21:31:25 +08:00
def __init__(self, epsilon=None):
2021-06-02 16:31:57 +08:00
super().__init__()
if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
epsilon = None
self.epsilon = epsilon
def _labelsmoothing(self, target, class_num):
if target.shape[-1] != class_num:
one_hot_target = F.one_hot(target, class_num)
else:
one_hot_target = target
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
return soft_target
def forward(self, x, label):
loss_dict = {}
if self.epsilon is not None:
class_num = x.shape[-1]
label = self._labelsmoothing(label, class_num)
x = -F.log_softmax(x, axis=-1)
loss = paddle.sum(x * label, axis=-1)
else:
if label.shape[-1] == x.shape[-1]:
label = F.softmax(label, axis=-1)
soft_label = True
else:
soft_label = False
loss = F.cross_entropy(x, label=label, soft_label=soft_label)
2021-06-03 21:31:25 +08:00
return loss
2021-06-02 16:31:57 +08:00
2021-07-07 15:54:02 +08:00
class KLJSLoss(object):
def __init__(self, mode="kl"):
assert mode in [
"kl",
"js",
"KL",
"JS",
], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
2021-07-07 15:54:02 +08:00
self.mode = mode
2022-08-29 14:03:05 +08:00
def __call__(self, p1, p2, reduction="mean", eps=1e-5):
if self.mode.lower() == "kl":
loss = paddle.multiply(p2, paddle.log((p2 + eps) / (p1 + eps) + eps))
loss += paddle.multiply(p1, paddle.log((p1 + eps) / (p2 + eps) + eps))
2022-07-01 18:05:39 +08:00
loss *= 0.5
elif self.mode.lower() == "js":
loss = paddle.multiply(
p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps)
)
loss += paddle.multiply(
p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps)
)
2021-07-07 15:54:02 +08:00
loss *= 0.5
2022-07-01 18:05:39 +08:00
else:
raise ValueError(
"The mode.lower() if KLJSLoss should be one of ['kl', 'js']"
)
2021-07-07 15:54:02 +08:00
if reduction == "mean":
loss = paddle.mean(loss, axis=[1, 2])
elif reduction == "none" or reduction is None:
return loss
2021-07-07 15:54:02 +08:00
else:
loss = paddle.sum(loss, axis=[1, 2])
return loss
2021-07-07 15:54:02 +08:00
2021-06-02 16:31:57 +08:00
class DMLLoss(nn.Layer):
"""
DMLLoss
"""
def __init__(self, act=None, use_log=False):
2021-06-02 16:31:57 +08:00
super().__init__()
2021-06-03 13:30:43 +08:00
if act is not None:
assert act in ["softmax", "sigmoid"]
if act == "softmax":
self.act = nn.Softmax(axis=-1)
elif act == "sigmoid":
self.act = nn.Sigmoid()
else:
self.act = None
self.use_log = use_log
2022-07-01 18:05:39 +08:00
self.jskl_loss = KLJSLoss(mode="kl")
2021-06-02 16:31:57 +08:00
def _kldiv(self, x, target):
eps = 1.0e-10
loss = target * (paddle.log(target + eps) - x)
# batch mean loss
loss = paddle.sum(loss) / loss.shape[0]
return loss
2021-06-02 16:31:57 +08:00
def forward(self, out1, out2):
2021-06-03 13:30:43 +08:00
if self.act is not None:
out1 = self.act(out1) + 1e-10
out2 = self.act(out2) + 1e-10
if self.use_log:
# for recognition distillation, log is needed for feature map
2021-07-07 15:54:02 +08:00
log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2)
loss = (self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
2021-07-07 15:54:02 +08:00
else:
# for detection distillation log is not needed
2021-07-07 15:54:02 +08:00
loss = self.jskl_loss(out1, out2)
2021-06-03 21:31:25 +08:00
return loss
2021-06-02 16:31:57 +08:00
class DistanceLoss(nn.Layer):
"""
DistanceLoss:
mode: loss mode
"""
2021-06-03 21:31:25 +08:00
def __init__(self, mode="l2", **kargs):
2021-06-03 13:57:31 +08:00
super().__init__()
2021-06-02 16:31:57 +08:00
assert mode in ["l1", "l2", "smooth_l1"]
if mode == "l1":
self.loss_func = nn.L1Loss(**kargs)
2021-06-03 13:30:43 +08:00
elif mode == "l2":
2021-06-02 16:31:57 +08:00
self.loss_func = nn.MSELoss(**kargs)
elif mode == "smooth_l1":
self.loss_func = nn.SmoothL1Loss(**kargs)
def forward(self, x, y):
2021-06-03 21:31:25 +08:00
return self.loss_func(x, y)
class LossFromOutput(nn.Layer):
def __init__(self, key="loss", reduction="none"):
super().__init__()
self.key = key
self.reduction = reduction
def forward(self, predicts, batch):
loss = predicts
if self.key is not None and isinstance(predicts, dict):
loss = loss[self.key]
if self.reduction == "mean":
loss = paddle.mean(loss)
elif self.reduction == "sum":
loss = paddle.sum(loss)
return {"loss": loss}
class KLDivLoss(nn.Layer):
"""
KLDivLoss
"""
def __init__(self):
super().__init__()
def _kldiv(self, x, target, mask=None):
eps = 1.0e-10
loss = target * (paddle.log(target + eps) - x)
if mask is not None:
loss = loss.flatten(0, 1).sum(axis=1)
loss = loss.masked_select(mask).mean()
else:
# batch mean loss
loss = paddle.sum(loss) / loss.shape[0]
return loss
def forward(self, logits_s, logits_t, mask=None):
log_out_s = F.log_softmax(logits_s, axis=-1)
out_t = F.softmax(logits_t, axis=-1)
loss = self._kldiv(log_out_s, out_t, mask)
return loss
class DKDLoss(nn.Layer):
"""
KLDivLoss
"""
def __init__(self, temperature=1.0, alpha=1.0, beta=1.0):
super().__init__()
self.temperature = temperature
self.alpha = alpha
self.beta = beta
def _cat_mask(self, t, mask1, mask2):
t1 = (t * mask1).sum(axis=1, keepdim=True)
t2 = (t * mask2).sum(axis=1, keepdim=True)
rt = paddle.concat([t1, t2], axis=1)
return rt
def _kl_div(self, x, label, mask=None):
y = (label * (paddle.log(label + 1e-10) - x)).sum(axis=1)
if mask is not None:
y = y.masked_select(mask).mean()
else:
y = y.mean()
return y
def forward(self, logits_student, logits_teacher, target, mask=None):
gt_mask = F.one_hot(target.reshape([-1]), num_classes=logits_student.shape[-1])
other_mask = 1 - gt_mask
logits_student = logits_student.flatten(0, 1)
logits_teacher = logits_teacher.flatten(0, 1)
pred_student = F.softmax(logits_student / self.temperature, axis=1)
pred_teacher = F.softmax(logits_teacher / self.temperature, axis=1)
pred_student = self._cat_mask(pred_student, gt_mask, other_mask)
pred_teacher = self._cat_mask(pred_teacher, gt_mask, other_mask)
log_pred_student = paddle.log(pred_student)
tckd_loss = self._kl_div(log_pred_student, pred_teacher) * (self.temperature**2)
pred_teacher_part2 = F.softmax(
logits_teacher / self.temperature - 1000.0 * gt_mask, axis=1
)
log_pred_student_part2 = F.log_softmax(
logits_student / self.temperature - 1000.0 * gt_mask, axis=1
)
nckd_loss = self._kl_div(log_pred_student_part2, pred_teacher_part2) * (
self.temperature**2
)
loss = self.alpha * tckd_loss + self.beta * nckd_loss
return loss