PaddleOCR/ppocr/losses/rec_spin_att_loss.py

53 lines
1.8 KiB
Python
Raw Permalink Normal View History

2022-07-10 09:20:59 +08:00
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
2022-06-12 13:53:29 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2022-07-10 09:20:59 +08:00
2022-06-12 13:53:29 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
"""This code is refer from:
2022-07-10 09:20:59 +08:00
https://github.com/hikopensource/DAVAR-Lab-OCR
"""
2022-06-12 13:53:29 +08:00
class SPINAttentionLoss(nn.Layer):
def __init__(self, reduction="mean", ignore_index=-100, **kwargs):
2022-06-12 13:53:29 +08:00
super(SPINAttentionLoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss(
weight=None, reduction=reduction, ignore_index=ignore_index
)
2022-06-12 13:53:29 +08:00
def forward(self, predicts, batch):
targets = batch[1].astype("int64")
targets = targets[:, 1:] # remove [eos] in label
label_lengths = batch[2].astype("int64")
batch_size, num_steps, num_classes = (
predicts.shape[0],
predicts.shape[1],
predicts.shape[2],
)
assert (
len(targets.shape) == len(list(predicts.shape)) - 1
), "The target's shape and inputs's shape is [N, d] and [N, num_steps]"
2022-06-12 13:53:29 +08:00
inputs = paddle.reshape(predicts, [-1, predicts.shape[-1]])
targets = paddle.reshape(targets, [-1])
return {"loss": self.loss_func(inputs, targets)}