55 lines
2.0 KiB
Python
55 lines
2.0 KiB
Python
|
# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class UniMERNetLoss(nn.Layer):
|
||
|
def __init__(self, length_aware=True, vocab_size=50000):
|
||
|
super(UniMERNetLoss, self).__init__()
|
||
|
self.ignore_index = -100
|
||
|
self.vocab_size = vocab_size
|
||
|
self.pad_token_id = 1
|
||
|
self.length_aware = length_aware
|
||
|
self.cross = nn.CrossEntropyLoss(
|
||
|
reduction="mean", ignore_index=self.ignore_index
|
||
|
)
|
||
|
self.counting_loss_fct = nn.SmoothL1Loss()
|
||
|
|
||
|
def _get_count_gt(self, labels):
|
||
|
mask = (labels != self.pad_token_id).cast("float32")
|
||
|
one_hot_labels = F.one_hot(
|
||
|
labels, num_classes=self.vocab_size
|
||
|
) * mask.unsqueeze(-1)
|
||
|
count_gt = paddle.sum(one_hot_labels, axis=1)
|
||
|
return count_gt
|
||
|
|
||
|
def forward(self, preds, batch):
|
||
|
logits, count_pred, masked_label = preds
|
||
|
labels = batch[1][:, 1:]
|
||
|
word_loss = self.cross(
|
||
|
paddle.reshape(logits, [-1, logits.shape[-1]]),
|
||
|
paddle.reshape(masked_label[:, 1:], [-1]),
|
||
|
)
|
||
|
loss = word_loss
|
||
|
if self.length_aware:
|
||
|
count_gt = self._get_count_gt(labels)
|
||
|
count_gt = paddle.log(count_gt.cast(paddle.float32) + 1)
|
||
|
count_loss = self.counting_loss_fct(count_pred, count_gt)
|
||
|
loss += 0.5 * count_loss
|
||
|
return {"loss": loss, "word_loss": word_loss, "count_loss": count_loss}
|