The Style-Text data synthesis tool is a tool based on Baidu's self-developed text editing algorithm "Editing Text in the Wild" [https://arxiv.org/abs/1908.03047](https://arxiv.org/abs/1908.03047).
Different from the commonly used GAN-based data synthesis tools, the main framework of Style-Text includes:
* (1) Text foreground style transfer module.
* (2) Background extraction module.
* (3) Fusion module.
After these three steps, you can quickly realize the image text style transfer. The following figure is som results of the data synthesis tool.
If you save the model in another location, please modify the address of the model file in `configs/config.yml`, and you need to modify these three configurations at the same time:
*`method`: The mothod of `CorpusGenerator`. If `FileCorpus` used, you need modify `corpus_file` and `language` accordingly, if `EnNumCorpus`, other configurations is not needed.
*`language`: The language of the corpus. Needed if method is not `EnNumCorpus`.
*`corpus_file`: The corpus file path. Needed if method is not `EnNumCorpus`.
We provide a general dataset constaining Chinese, English and Korean (50,000 images in all) for your trial ([download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/chkoen_5w.tar)), some examples are given below :
We take two scenes as examples, which are metal surface English number recognition and general Korean recognition, to illustrate practical cases of using StyleText to synthesize data to improve text recognition. The following figure shows some examples of real scene images and composite images:
<divalign="center">
<imgsrc="doc/images/6.png"width="800">
</div>
After adding the above synthetic data for training, the accuracy of the recognition model is improved, which is shown in the following table:
| Scenario | Characters | Raw Data | Test Data | Only Use Raw Data</br>Recognition Accuracy | New Synthetic Data | Simultaneous Use of Synthetic Data</br>Recognition Accuracy | Index Improvement |