119 lines
4.3 KiB
Markdown
119 lines
4.3 KiB
Markdown
|
# DB
|
|||
|
|
|||
|
- [1. 算法简介](#1)
|
|||
|
- [2. 环境配置](#2)
|
|||
|
- [3. 快速使用](#3)
|
|||
|
- [4. 模型训练、评估、预测](#4)
|
|||
|
- [5. 推理部署](#5)
|
|||
|
- [6. FAQ](#6)
|
|||
|
|
|||
|
<a name="1"></a>
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
论文信息:
|
|||
|
> [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947)
|
|||
|
> Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
|
|||
|
> AAAI, 2020
|
|||
|
|
|||
|
在ICDAR2015文本检测公开数据集上,算法复现效果如下:
|
|||
|
|
|||
|
|模型|骨干网络|precision|recall|Hmean|下载链接|
|
|||
|
| --- | --- | --- | --- | --- | --- |
|
|||
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
|||
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
|||
|
|
|||
|
|
|||
|
<a name="2"></a>
|
|||
|
## 2. 环境配置
|
|||
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目
|
|||
|
|
|||
|
|
|||
|
<a name="3"></a>
|
|||
|
## 3. 快速使用
|
|||
|
参考本节,可以直接下载训好的模型,进行基于训练引擎的模型预测。
|
|||
|
|
|||
|
### 训练模型下载
|
|||
|
根据第1节给出的模型列表,选择下载训练模型:
|
|||
|
```bash
|
|||
|
mkdir trained_models && cd trained_models
|
|||
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar && tar xf det_mv3_db_v2.0_train.tar
|
|||
|
cd ..
|
|||
|
```
|
|||
|
* windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下
|
|||
|
|
|||
|
解压完毕后应有如下文件结构:
|
|||
|
```
|
|||
|
├── det_mv3_db_v2.0_train
|
|||
|
│ ├── best_accuracy.states
|
|||
|
│ ├── best_accuracy.pdparams
|
|||
|
│ ├── best_accuracy.pdopt
|
|||
|
│ └── train.log
|
|||
|
```
|
|||
|
### 单张图像或者图像集合预测
|
|||
|
```bash
|
|||
|
# 预测image_dir指定的单张图像
|
|||
|
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
|
|||
|
|
|||
|
# 预测image_dir指定的图像集合
|
|||
|
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext"
|
|||
|
|
|||
|
# 如果想使用CPU进行预测,需设置use_gpu参数为False
|
|||
|
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext" --use_gpu=False
|
|||
|
```
|
|||
|
### 可视化结果
|
|||
|
可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
|
|||
|

|
|||
|
|
|||
|
<a name="4"></a>
|
|||
|
## 4. 模型训练、评估、预测
|
|||
|
### 4.1 训练
|
|||
|
### 4.2 评估
|
|||
|
### 4.3 预测
|
|||
|
|
|||
|
<a name="5"></a>
|
|||
|
## 5. 推理部署
|
|||
|
### 5.1 Python推理
|
|||
|
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
|||
|
```
|
|||
|
|
|||
|
DB文本检测模型推理,可以执行如下命令:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
|
|||
|
```
|
|||
|
|
|||
|
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
|
|||
|
|
|||
|
### 5.2 C++推理
|
|||
|
敬请期待
|
|||
|
|
|||
|
### 5.3 Serving服务化部署
|
|||
|
敬请期待
|
|||
|
|
|||
|
### 5.4 Paddle2ONNX推理
|
|||
|
敬请期待
|
|||
|
|
|||
|
<a name="6"></a>
|
|||
|
## 6. FAQ
|
|||
|
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
```bibtex
|
|||
|
@inproceedings{liao2020real,
|
|||
|
title={Real-time scene text detection with differentiable binarization},
|
|||
|
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
|||
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
|||
|
volume={34},
|
|||
|
number={07},
|
|||
|
pages={11474--11481},
|
|||
|
year={2020}
|
|||
|
}
|
|||
|
```
|