Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [text detection training tutorial](./detection_en.md). PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
#### (1). Quadrangle text detection model (ICDAR2015)
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
#### (2). Curved text detection model (Total-Text)
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)), you can use the following command to convert:
For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`, run the following command:
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},