145 lines
3.9 KiB
Markdown
145 lines
3.9 KiB
Markdown
|
|
|||
|
# 关键信息抽取算法-SDMGR
|
|||
|
|
|||
|
- [1. 算法简介](#1-算法简介)
|
|||
|
- [2. 环境配置](#2-环境配置)
|
|||
|
- [3. 模型训练、评估、预测](#3-模型训练评估预测)
|
|||
|
- [3.1 模型训练](#31-模型训练)
|
|||
|
- [3.2 模型评估](#32-模型评估)
|
|||
|
- [3.3 模型预测](#33-模型预测)
|
|||
|
- [4. 推理部署](#4-推理部署)
|
|||
|
- [4.1 Python推理](#41-python推理)
|
|||
|
- [4.2 C++推理部署](#42-c推理部署)
|
|||
|
- [4.3 Serving服务化部署](#43-serving服务化部署)
|
|||
|
- [4.4 更多推理部署](#44-更多推理部署)
|
|||
|
- [5. FAQ](#5-faq)
|
|||
|
- [引用](#引用)
|
|||
|
|
|||
|
|
|||
|
<a name="1"></a>
|
|||
|
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
|
|||
|
论文信息:
|
|||
|
|
|||
|
> [Spatial Dual-Modality Graph Reasoning for Key Information Extraction](https://arxiv.org/abs/2103.14470)
|
|||
|
>
|
|||
|
> Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang
|
|||
|
>
|
|||
|
> 2021
|
|||
|
|
|||
|
在wildreceipt发票公开数据集上,算法复现效果如下:
|
|||
|
|
|||
|
|模型|骨干网络|配置文件|hmean|下载链接|
|
|||
|
| --- | --- | --- | --- | --- |
|
|||
|
|SDMGR|VGG6|[configs/kie/sdmgr/kie_unet_sdmgr.yml](../../configs/kie/sdmgr/kie_unet_sdmgr.yml)|86.7%|[训练模型]( https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar)/[推理模型(coming soon)]()|
|
|||
|
|
|||
|
|
|||
|
<a name="2"></a>
|
|||
|
|
|||
|
## 2. 环境配置
|
|||
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|||
|
|
|||
|
|
|||
|
<a name="3"></a>
|
|||
|
|
|||
|
## 3. 模型训练、评估、预测
|
|||
|
|
|||
|
SDMGR是一个关键信息提取算法,将每个检测到的文本区域分类为预定义的类别,如订单ID、发票号码,金额等。
|
|||
|
|
|||
|
训练和测试的数据采用wildreceipt数据集,通过如下指令下载数据集:
|
|||
|
|
|||
|
```bash
|
|||
|
wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/wildreceipt.tar && tar xf wildreceipt.tar
|
|||
|
```
|
|||
|
|
|||
|
创建数据集软链到PaddleOCR/train_data目录下:
|
|||
|
```
|
|||
|
cd PaddleOCR/ && mkdir train_data && cd train_data
|
|||
|
|
|||
|
ln -s ../../wildreceipt ./
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
### 3.1 模型训练
|
|||
|
|
|||
|
训练采用的配置文件是`configs/kie/sdmgr/kie_unet_sdmgr.yml`,配置文件中默认训练数据路径是`train_data/wildreceipt`,准备好数据后,可以通过如下指令执行训练:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/train.py -c configs/kie/sdmgr/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/
|
|||
|
```
|
|||
|
|
|||
|
### 3.2 模型评估
|
|||
|
|
|||
|
执行下面的命令进行模型评估
|
|||
|
|
|||
|
```bash
|
|||
|
python3 tools/eval.py -c configs/kie/sdmgr/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy
|
|||
|
```
|
|||
|
|
|||
|
输出信息示例如下所示。
|
|||
|
|
|||
|
```py
|
|||
|
[2022/08/10 05:22:23] ppocr INFO: metric eval ***************
|
|||
|
[2022/08/10 05:22:23] ppocr INFO: hmean:0.8670120239257812
|
|||
|
[2022/08/10 05:22:23] ppocr INFO: fps:10.18816520530961
|
|||
|
```
|
|||
|
|
|||
|
### 3.3 模型预测
|
|||
|
|
|||
|
执行下面的命令进行模型预测,预测的时候需要预先加载存储图片路径以及OCR信息的文本文件,使用`Global.infer_img`进行指定。
|
|||
|
|
|||
|
```bash
|
|||
|
python3 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy Global.infer_img=./train_data/wildreceipt/1.txt
|
|||
|
```
|
|||
|
|
|||
|
执行预测后的结果保存在`./output/sdmgr_kie/predicts_kie.txt`文件中,可视化结果保存在`/output/sdmgr_kie/kie_results/`目录下。
|
|||
|
|
|||
|
可视化结果如下图所示:
|
|||
|
|
|||
|
<div align="center">
|
|||
|
<img src="../../ppstructure/docs/imgs/sdmgr_result.png" width="800">
|
|||
|
</div>
|
|||
|
|
|||
|
<a name="4"></a>
|
|||
|
## 4. 推理部署
|
|||
|
|
|||
|
<a name="4-1"></a>
|
|||
|
### 4.1 Python推理
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="4-2"></a>
|
|||
|
### 4.2 C++推理部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="4-3"></a>
|
|||
|
### 4.3 Serving服务化部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="4-4"></a>
|
|||
|
### 4.4 更多推理部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="5"></a>
|
|||
|
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
|
|||
|
```bibtex
|
|||
|
@misc{sun2021spatial,
|
|||
|
title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
|
|||
|
author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang},
|
|||
|
year={2021},
|
|||
|
eprint={2103.14470},
|
|||
|
archivePrefix={arXiv},
|
|||
|
primaryClass={cs.CV}
|
|||
|
}
|
|||
|
```
|