62 lines
1.9 KiB
Python
Raw Normal View History

import os
import sys
import pathlib
__dir__ = pathlib.Path(os.path.abspath(__file__))
sys.path.append(str(__dir__))
sys.path.append(str(__dir__.parent.parent))
import paddle
import paddle.distributed as dist
from utils import Config, ArgsParser
def init_args():
parser = ArgsParser()
args = parser.parse_args()
return args
def main(config, profiler_options):
from models import build_model, build_loss
from data_loader import get_dataloader
from trainer import Trainer
from post_processing import get_post_processing
from utils import get_metric
if paddle.device.cuda.device_count() > 1:
dist.init_parallel_env()
config['distributed'] = True
else:
config['distributed'] = False
train_loader = get_dataloader(config['dataset']['train'],
config['distributed'])
assert train_loader is not None
if 'validate' in config['dataset']:
validate_loader = get_dataloader(config['dataset']['validate'], False)
else:
validate_loader = None
criterion = build_loss(config['loss'])
config['arch']['backbone']['in_channels'] = 3 if config['dataset']['train'][
'dataset']['args']['img_mode'] != 'GRAY' else 1
model = build_model(config['arch'])
# set @to_static for benchmark, skip this by default.
post_p = get_post_processing(config['post_processing'])
metric = get_metric(config['metric'])
trainer = Trainer(
config=config,
model=model,
criterion=criterion,
train_loader=train_loader,
post_process=post_p,
metric_cls=metric,
validate_loader=validate_loader,
profiler_options=profiler_options)
trainer.train()
if __name__ == '__main__':
args = init_args()
assert os.path.exists(args.config_file)
config = Config(args.config_file)
config.merge_dict(args.opt)
main(config.cfg, args.profiler_options)