125 lines
4.1 KiB
Markdown
125 lines
4.1 KiB
Markdown
|
# ParseQ
|
|||
|
|
|||
|
- [1. 算法简介](#1)
|
|||
|
- [2. 环境配置](#2)
|
|||
|
- [3. 模型训练、评估、预测](#3)
|
|||
|
- [3.1 训练](#3-1)
|
|||
|
- [3.2 评估](#3-2)
|
|||
|
- [3.3 预测](#3-3)
|
|||
|
- [4. 推理部署](#4)
|
|||
|
- [4.1 Python推理](#4-1)
|
|||
|
- [4.2 C++推理](#4-2)
|
|||
|
- [4.3 Serving服务化部署](#4-3)
|
|||
|
- [4.4 更多推理部署](#4-4)
|
|||
|
- [5. FAQ](#5)
|
|||
|
|
|||
|
<a name="1"></a>
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
论文信息:
|
|||
|
> [Scene Text Recognition with Permuted Autoregressive Sequence Models](https://arxiv.org/abs/2207.06966)
|
|||
|
> Darwin Bautista, Rowel Atienza
|
|||
|
> ECCV, 2021
|
|||
|
|
|||
|
原论文分别使用真实文本识别数据集(Real)和合成文本识别数据集(Synth)进行训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估。
|
|||
|
其中:
|
|||
|
- 真实文本识别数据集(Real)包含COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR, OpenVINO数据集
|
|||
|
- 合成文本识别数据集(Synth)包含MJSynth和SynthText数据集
|
|||
|
|
|||
|
在不同数据集上训练的算法的复现效果如下:
|
|||
|
|
|||
|
|数据集|模型|骨干网络|配置文件|Acc|下载链接|
|
|||
|
| --- | --- | --- | --- | --- | --- |
|
|||
|
|Synth|ParseQ|VIT|[rec_vit_parseq.yml](../../configs/rec/rec_vit_parseq.yml)|91.24%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz)|
|
|||
|
|Real|ParseQ|VIT|[rec_vit_parseq.yml](../../configs/rec/rec_vit_parseq.yml)|94.74%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz)|
|
|||
|
|||||||
|
|||
|
|
|||
|
<a name="2"></a>
|
|||
|
## 2. 环境配置
|
|||
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|||
|
|
|||
|
|
|||
|
<a name="3"></a>
|
|||
|
## 3. 模型训练、评估、预测
|
|||
|
|
|||
|
请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
|||
|
|
|||
|
训练
|
|||
|
|
|||
|
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
|
|||
|
|
|||
|
```
|
|||
|
#单卡训练(训练周期长,不建议)
|
|||
|
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml
|
|||
|
|
|||
|
#多卡训练,通过--gpus参数指定卡号
|
|||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml
|
|||
|
```
|
|||
|
|
|||
|
评估
|
|||
|
|
|||
|
```
|
|||
|
# GPU 评估, Global.pretrained_model 为待测权重
|
|||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|||
|
```
|
|||
|
|
|||
|
预测:
|
|||
|
|
|||
|
```
|
|||
|
# 预测使用的配置文件必须与训练一致
|
|||
|
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
|||
|
```
|
|||
|
|
|||
|
<a name="4"></a>
|
|||
|
## 4. 推理部署
|
|||
|
|
|||
|
<a name="4-1"></a>
|
|||
|
### 4.1 Python推理
|
|||
|
首先将ParseQ文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz) ),可以使用如下命令进行转换:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq
|
|||
|
```
|
|||
|
|
|||
|
ParseQ文本识别模型推理,可以执行如下命令:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False
|
|||
|
```
|
|||
|
|
|||
|
<a name="4-2"></a>
|
|||
|
### 4.2 C++推理
|
|||
|
|
|||
|
由于C++预处理后处理还未支持ParseQ,所以暂未支持
|
|||
|
|
|||
|
<a name="4-3"></a>
|
|||
|
### 4.3 Serving服务化部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="4-4"></a>
|
|||
|
### 4.4 更多推理部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="5"></a>
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
```bibtex
|
|||
|
@InProceedings{bautista2022parseq,
|
|||
|
title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
|
|||
|
author={Bautista, Darwin and Atienza, Rowel},
|
|||
|
booktitle={European Conference on Computer Vision},
|
|||
|
pages={178--196},
|
|||
|
month={10},
|
|||
|
year={2022},
|
|||
|
publisher={Springer Nature Switzerland},
|
|||
|
address={Cham},
|
|||
|
doi={10.1007/978-3-031-19815-1_11},
|
|||
|
url={https://doi.org/10.1007/978-3-031-19815-1_11}
|
|||
|
}
|
|||
|
```
|