PaddleOCR/ppocr/optimizer/__init__.py

67 lines
2.3 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
2020-12-14 12:19:33 +08:00
import paddle
2020-10-13 17:13:33 +08:00
__all__ = ["build_optimizer"]
2020-10-13 17:13:33 +08:00
def build_lr_scheduler(lr_config, epochs, step_each_epoch):
from . import learning_rate
lr_config.update({"epochs": epochs, "step_each_epoch": step_each_epoch})
lr_name = lr_config.pop("name", "Const")
2022-02-12 21:35:13 +08:00
lr = getattr(learning_rate, lr_name)(**lr_config)()
2020-10-13 17:13:33 +08:00
return lr
2022-04-26 18:30:26 +08:00
def build_optimizer(config, epochs, step_each_epoch, model):
2020-10-13 17:13:33 +08:00
from . import regularizer, optimizer
2020-10-13 17:13:33 +08:00
config = copy.deepcopy(config)
# step1 build lr
lr = build_lr_scheduler(config.pop("lr"), epochs, step_each_epoch)
2020-10-13 17:13:33 +08:00
# step2 build regularization
if "regularizer" in config and config["regularizer"] is not None:
reg_config = config.pop("regularizer")
reg_name = reg_config.pop("name")
if not hasattr(regularizer, reg_name):
reg_name += "Decay"
2020-10-13 17:13:33 +08:00
reg = getattr(regularizer, reg_name)(**reg_config)()
elif "weight_decay" in config:
reg = config.pop("weight_decay")
2020-10-13 17:13:33 +08:00
else:
reg = None
# step3 build optimizer
optim_name = config.pop("name")
if "clip_norm" in config:
clip_norm = config.pop("clip_norm")
2020-12-14 12:19:33 +08:00
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
elif "clip_norm_global" in config:
clip_norm = config.pop("clip_norm_global")
grad_clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=clip_norm)
2020-12-14 12:19:33 +08:00
else:
grad_clip = None
optim = getattr(optimizer, optim_name)(
learning_rate=lr, weight_decay=reg, grad_clip=grad_clip, **config
)
2022-04-26 18:30:26 +08:00
return optim(model), lr