2021-08-11 13:04:47 +00:00
|
|
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "glog/logging.h"
|
|
|
|
#include "omp.h"
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/imgcodecs.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include <chrono>
|
|
|
|
#include <iomanip>
|
|
|
|
#include <iostream>
|
|
|
|
#include <ostream>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include <cstring>
|
|
|
|
#include <fstream>
|
|
|
|
#include <numeric>
|
|
|
|
|
|
|
|
#include <glog/logging.h>
|
|
|
|
#include <include/ocr_det.h>
|
|
|
|
#include <include/ocr_cls.h>
|
|
|
|
#include <include/ocr_rec.h>
|
2021-08-16 08:52:21 +00:00
|
|
|
#include <include/utility.h>
|
2021-08-11 13:04:47 +00:00
|
|
|
#include <sys/stat.h>
|
|
|
|
|
|
|
|
#include <gflags/gflags.h>
|
|
|
|
|
|
|
|
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
|
|
|
|
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
|
|
|
|
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
|
2021-08-19 07:27:55 +00:00
|
|
|
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
|
|
|
|
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
|
2021-08-11 13:04:47 +00:00
|
|
|
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
|
2021-08-16 08:52:21 +00:00
|
|
|
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
|
|
|
|
DEFINE_bool(benchmark, true, "Whether use benchmark.");
|
|
|
|
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
|
2021-08-11 13:04:47 +00:00
|
|
|
// detection related
|
|
|
|
DEFINE_string(image_dir, "", "Dir of input image.");
|
|
|
|
DEFINE_string(det_model_dir, "", "Path of det inference model.");
|
|
|
|
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
|
|
|
|
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
|
|
|
|
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
|
|
|
|
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
|
|
|
|
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
|
|
|
|
DEFINE_bool(visualize, true, "Whether show the detection results.");
|
|
|
|
// classification related
|
|
|
|
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
|
|
|
|
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
|
|
|
|
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
|
|
|
|
// recognition related
|
|
|
|
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
|
2021-08-19 07:27:55 +00:00
|
|
|
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
|
2021-08-11 13:04:47 +00:00
|
|
|
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
|
|
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
using namespace PaddleOCR;
|
|
|
|
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
void PrintBenchmarkLog(std::string model_name,
|
|
|
|
int batch_size,
|
|
|
|
std::string input_shape,
|
|
|
|
std::vector<double> time_info,
|
|
|
|
int img_num){
|
|
|
|
LOG(INFO) << "----------------------- Config info -----------------------";
|
|
|
|
LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
|
|
|
|
LOG(INFO) << "ir_optim: " << "True";
|
|
|
|
LOG(INFO) << "enable_memory_optim: " << "True";
|
|
|
|
LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
|
2021-08-19 07:27:55 +00:00
|
|
|
LOG(INFO) << "enable_mkldnn: " << (FLAGS_enable_mkldnn ? "True" : "False");
|
|
|
|
LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
|
2021-08-16 08:52:21 +00:00
|
|
|
LOG(INFO) << "----------------------- Data info -----------------------";
|
|
|
|
LOG(INFO) << "batch_size: " << batch_size;
|
|
|
|
LOG(INFO) << "input_shape: " << input_shape;
|
|
|
|
LOG(INFO) << "data_num: " << img_num;
|
|
|
|
LOG(INFO) << "----------------------- Model info -----------------------";
|
|
|
|
LOG(INFO) << "model_name: " << model_name;
|
|
|
|
LOG(INFO) << "precision: " << FLAGS_precision;
|
|
|
|
LOG(INFO) << "----------------------- Perf info ------------------------";
|
|
|
|
LOG(INFO) << "Total time spent(ms): "
|
|
|
|
<< std::accumulate(time_info.begin(), time_info.end(), 0);
|
|
|
|
LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
|
|
|
|
<< ", inference_time(ms): " << time_info[1] / img_num
|
|
|
|
<< ", postprocess_time(ms): " << time_info[2] / img_num;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-08-11 13:04:47 +00:00
|
|
|
static bool PathExists(const std::string& path){
|
|
|
|
#ifdef _WIN32
|
|
|
|
struct _stat buffer;
|
|
|
|
return (_stat(path.c_str(), &buffer) == 0);
|
|
|
|
#else
|
|
|
|
struct stat buffer;
|
|
|
|
return (stat(path.c_str(), &buffer) == 0);
|
|
|
|
#endif // !_WIN32
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
int main_det(std::vector<cv::String> cv_all_img_names) {
|
|
|
|
std::vector<double> time_info = {0, 0, 0};
|
2021-08-11 13:04:47 +00:00
|
|
|
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
2021-08-19 07:27:55 +00:00
|
|
|
FLAGS_gpu_mem, FLAGS_cpu_threads,
|
|
|
|
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
|
2021-08-11 13:04:47 +00:00
|
|
|
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
|
|
|
|
FLAGS_use_polygon_score, FLAGS_visualize,
|
2021-08-16 08:52:21 +00:00
|
|
|
FLAGS_use_tensorrt, FLAGS_precision);
|
|
|
|
|
2021-08-11 13:04:47 +00:00
|
|
|
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
|
|
|
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
|
|
|
|
|
|
|
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
|
|
|
|
if (!srcimg.data) {
|
|
|
|
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<int>>> boxes;
|
2021-08-16 08:52:21 +00:00
|
|
|
std::vector<double> det_times;
|
2021-08-11 13:04:47 +00:00
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
det.Run(srcimg, boxes, &det_times);
|
|
|
|
|
|
|
|
time_info[0] += det_times[0];
|
|
|
|
time_info[1] += det_times[1];
|
|
|
|
time_info[2] += det_times[2];
|
2021-08-11 13:04:47 +00:00
|
|
|
}
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
if (FLAGS_benchmark) {
|
|
|
|
PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
|
|
|
|
}
|
2021-08-11 13:04:47 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
int main_rec(std::vector<cv::String> cv_all_img_names) {
|
|
|
|
std::vector<double> time_info = {0, 0, 0};
|
2021-08-11 13:04:47 +00:00
|
|
|
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
2021-08-19 07:27:55 +00:00
|
|
|
FLAGS_gpu_mem, FLAGS_cpu_threads,
|
|
|
|
FLAGS_enable_mkldnn, FLAGS_char_list_file,
|
2021-08-16 08:52:21 +00:00
|
|
|
FLAGS_use_tensorrt, FLAGS_precision);
|
2021-08-11 13:04:47 +00:00
|
|
|
|
|
|
|
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
|
|
|
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
|
|
|
|
|
|
|
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
|
|
|
|
if (!srcimg.data) {
|
|
|
|
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
std::vector<double> rec_times;
|
|
|
|
rec.Run(srcimg, &rec_times);
|
2021-08-11 13:04:47 +00:00
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
time_info[0] += rec_times[0];
|
|
|
|
time_info[1] += rec_times[1];
|
|
|
|
time_info[2] += rec_times[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FLAGS_benchmark) {
|
|
|
|
PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
|
2021-08-11 13:04:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
int main_system(std::vector<cv::String> cv_all_img_names) {
|
2021-08-11 13:04:47 +00:00
|
|
|
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
2021-08-19 07:27:55 +00:00
|
|
|
FLAGS_gpu_mem, FLAGS_cpu_threads,
|
|
|
|
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
|
2021-08-11 13:04:47 +00:00
|
|
|
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
|
|
|
|
FLAGS_use_polygon_score, FLAGS_visualize,
|
2021-08-16 08:52:21 +00:00
|
|
|
FLAGS_use_tensorrt, FLAGS_precision);
|
2021-08-11 13:04:47 +00:00
|
|
|
|
|
|
|
Classifier *cls = nullptr;
|
|
|
|
if (FLAGS_use_angle_cls) {
|
|
|
|
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
2021-08-19 07:27:55 +00:00
|
|
|
FLAGS_gpu_mem, FLAGS_cpu_threads,
|
|
|
|
FLAGS_enable_mkldnn, FLAGS_cls_thresh,
|
2021-08-16 08:52:21 +00:00
|
|
|
FLAGS_use_tensorrt, FLAGS_precision);
|
2021-08-11 13:04:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
2021-08-19 07:27:55 +00:00
|
|
|
FLAGS_gpu_mem, FLAGS_cpu_threads,
|
|
|
|
FLAGS_enable_mkldnn, FLAGS_char_list_file,
|
2021-08-16 08:52:21 +00:00
|
|
|
FLAGS_use_tensorrt, FLAGS_precision);
|
2021-08-11 13:04:47 +00:00
|
|
|
|
|
|
|
auto start = std::chrono::system_clock::now();
|
|
|
|
|
|
|
|
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
|
|
|
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
|
|
|
|
|
|
|
cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
|
|
|
|
if (!srcimg.data) {
|
|
|
|
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<int>>> boxes;
|
2021-08-16 08:52:21 +00:00
|
|
|
std::vector<double> det_times;
|
|
|
|
std::vector<double> rec_times;
|
|
|
|
|
|
|
|
det.Run(srcimg, boxes, &det_times);
|
2021-08-11 13:04:47 +00:00
|
|
|
|
|
|
|
cv::Mat crop_img;
|
|
|
|
for (int j = 0; j < boxes.size(); j++) {
|
2021-08-16 08:52:21 +00:00
|
|
|
crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
|
2021-08-11 13:04:47 +00:00
|
|
|
|
|
|
|
if (cls != nullptr) {
|
|
|
|
crop_img = cls->Run(crop_img);
|
|
|
|
}
|
2021-08-16 08:52:21 +00:00
|
|
|
rec.Run(crop_img, &rec_times);
|
2021-08-11 13:04:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
auto end = std::chrono::system_clock::now();
|
|
|
|
auto duration =
|
|
|
|
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
|
|
|
std::cout << "Cost "
|
|
|
|
<< double(duration.count()) *
|
|
|
|
std::chrono::microseconds::period::num /
|
|
|
|
std::chrono::microseconds::period::den
|
|
|
|
<< "s" << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
void check_params(char* mode) {
|
|
|
|
if (strcmp(mode, "det")==0) {
|
|
|
|
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
|
|
|
|
std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
|
|
|
|
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (strcmp(mode, "rec")==0) {
|
|
|
|
if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
|
|
|
|
std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
|
|
|
|
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (strcmp(mode, "system")==0) {
|
|
|
|
if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
|
|
|
|
(FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
|
|
|
|
std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
|
|
|
|
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
|
|
|
|
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
|
|
|
std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
|
|
|
|
<< "--use_angle_cls=true "
|
|
|
|
<< "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
|
|
|
|
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
|
|
|
|
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
|
|
|
|
cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-08-11 13:04:47 +00:00
|
|
|
int main(int argc, char **argv) {
|
2021-08-16 08:52:21 +00:00
|
|
|
if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
|
|
|
|
std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
std::cout << "mode: " << argv[1] << endl;
|
|
|
|
|
|
|
|
// Parsing command-line
|
|
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
check_params(argv[1]);
|
|
|
|
|
|
|
|
if (!PathExists(FLAGS_image_dir)) {
|
|
|
|
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
2021-08-11 13:04:47 +00:00
|
|
|
|
2021-08-16 08:52:21 +00:00
|
|
|
std::vector<cv::String> cv_all_img_names;
|
|
|
|
cv::glob(FLAGS_image_dir, cv_all_img_names);
|
|
|
|
std::cout << "total images num: " << cv_all_img_names.size() << endl;
|
|
|
|
|
|
|
|
if (strcmp(argv[1], "det")==0) {
|
|
|
|
return main_det(cv_all_img_names);
|
|
|
|
}
|
|
|
|
if (strcmp(argv[1], "rec")==0) {
|
|
|
|
return main_rec(cv_all_img_names);
|
|
|
|
}
|
|
|
|
if (strcmp(argv[1], "system")==0) {
|
|
|
|
return main_system(cv_all_img_names);
|
|
|
|
}
|
|
|
|
|
2021-08-11 13:04:47 +00:00
|
|
|
}
|