305 lines
12 KiB
C++
Raw Normal View History

2021-08-11 13:04:47 +00:00
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
2021-08-16 08:52:21 +00:00
#include <include/utility.h>
2021-08-11 13:04:47 +00:00
#include <sys/stat.h>
#include <gflags/gflags.h>
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
2021-08-19 07:27:55 +00:00
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
2021-08-11 13:04:47 +00:00
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
2021-08-16 08:52:21 +00:00
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
2021-08-11 13:04:47 +00:00
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
2021-08-19 07:27:55 +00:00
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
2021-08-11 13:04:47 +00:00
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
using namespace std;
using namespace cv;
using namespace PaddleOCR;
2021-08-16 08:52:21 +00:00
void PrintBenchmarkLog(std::string model_name,
int batch_size,
std::string input_shape,
std::vector<double> time_info,
int img_num){
LOG(INFO) << "----------------------- Config info -----------------------";
LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
LOG(INFO) << "ir_optim: " << "True";
LOG(INFO) << "enable_memory_optim: " << "True";
LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
2021-08-19 07:27:55 +00:00
LOG(INFO) << "enable_mkldnn: " << (FLAGS_enable_mkldnn ? "True" : "False");
LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
2021-08-16 08:52:21 +00:00
LOG(INFO) << "----------------------- Data info -----------------------";
LOG(INFO) << "batch_size: " << batch_size;
LOG(INFO) << "input_shape: " << input_shape;
LOG(INFO) << "data_num: " << img_num;
LOG(INFO) << "----------------------- Model info -----------------------";
LOG(INFO) << "model_name: " << model_name;
LOG(INFO) << "precision: " << FLAGS_precision;
LOG(INFO) << "----------------------- Perf info ------------------------";
LOG(INFO) << "Total time spent(ms): "
<< std::accumulate(time_info.begin(), time_info.end(), 0);
LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
<< ", inference_time(ms): " << time_info[1] / img_num
<< ", postprocess_time(ms): " << time_info[2] / img_num;
}
2021-08-11 13:04:47 +00:00
static bool PathExists(const std::string& path){
#ifdef _WIN32
struct _stat buffer;
return (_stat(path.c_str(), &buffer) == 0);
#else
struct stat buffer;
return (stat(path.c_str(), &buffer) == 0);
#endif // !_WIN32
}
2021-08-16 08:52:21 +00:00
int main_det(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
2021-08-11 13:04:47 +00:00
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
2021-08-19 07:27:55 +00:00
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
2021-08-11 13:04:47 +00:00
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
2021-08-16 08:52:21 +00:00
FLAGS_use_tensorrt, FLAGS_precision);
2021-08-11 13:04:47 +00:00
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
}
std::vector<std::vector<std::vector<int>>> boxes;
2021-08-16 08:52:21 +00:00
std::vector<double> det_times;
2021-08-11 13:04:47 +00:00
2021-08-16 08:52:21 +00:00
det.Run(srcimg, boxes, &det_times);
time_info[0] += det_times[0];
time_info[1] += det_times[1];
time_info[2] += det_times[2];
2021-08-11 13:04:47 +00:00
}
2021-08-16 08:52:21 +00:00
if (FLAGS_benchmark) {
PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
}
2021-08-11 13:04:47 +00:00
return 0;
}
2021-08-16 08:52:21 +00:00
int main_rec(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
2021-08-11 13:04:47 +00:00
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
2021-08-19 07:27:55 +00:00
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_char_list_file,
2021-08-16 08:52:21 +00:00
FLAGS_use_tensorrt, FLAGS_precision);
2021-08-11 13:04:47 +00:00
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
}
2021-08-16 08:52:21 +00:00
std::vector<double> rec_times;
rec.Run(srcimg, &rec_times);
2021-08-11 13:04:47 +00:00
2021-08-16 08:52:21 +00:00
time_info[0] += rec_times[0];
time_info[1] += rec_times[1];
time_info[2] += rec_times[2];
}
if (FLAGS_benchmark) {
PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
2021-08-11 13:04:47 +00:00
}
return 0;
}
2021-08-16 08:52:21 +00:00
int main_system(std::vector<cv::String> cv_all_img_names) {
2021-08-11 13:04:47 +00:00
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
2021-08-19 07:27:55 +00:00
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
2021-08-11 13:04:47 +00:00
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
2021-08-16 08:52:21 +00:00
FLAGS_use_tensorrt, FLAGS_precision);
2021-08-11 13:04:47 +00:00
Classifier *cls = nullptr;
if (FLAGS_use_angle_cls) {
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
2021-08-19 07:27:55 +00:00
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_cls_thresh,
2021-08-16 08:52:21 +00:00
FLAGS_use_tensorrt, FLAGS_precision);
2021-08-11 13:04:47 +00:00
}
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
2021-08-19 07:27:55 +00:00
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_char_list_file,
2021-08-16 08:52:21 +00:00
FLAGS_use_tensorrt, FLAGS_precision);
2021-08-11 13:04:47 +00:00
auto start = std::chrono::system_clock::now();
for (int i = 0; i < cv_all_img_names.size(); ++i) {
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
if (!srcimg.data) {
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
exit(1);
}
std::vector<std::vector<std::vector<int>>> boxes;
2021-08-16 08:52:21 +00:00
std::vector<double> det_times;
std::vector<double> rec_times;
det.Run(srcimg, boxes, &det_times);
2021-08-11 13:04:47 +00:00
cv::Mat crop_img;
for (int j = 0; j < boxes.size(); j++) {
2021-08-16 08:52:21 +00:00
crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
2021-08-11 13:04:47 +00:00
if (cls != nullptr) {
crop_img = cls->Run(crop_img);
}
2021-08-16 08:52:21 +00:00
rec.Run(crop_img, &rec_times);
2021-08-11 13:04:47 +00:00
}
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den
<< "s" << std::endl;
}
return 0;
}
2021-08-16 08:52:21 +00:00
void check_params(char* mode) {
if (strcmp(mode, "det")==0) {
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (strcmp(mode, "rec")==0) {
if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (strcmp(mode, "system")==0) {
if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
(FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
<< "--use_angle_cls=true "
<< "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
exit(1);
}
}
if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
exit(1);
}
}
2021-08-11 13:04:47 +00:00
int main(int argc, char **argv) {
2021-08-16 08:52:21 +00:00
if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
return -1;
}
std::cout << "mode: " << argv[1] << endl;
// Parsing command-line
google::ParseCommandLineFlags(&argc, &argv, true);
check_params(argv[1]);
if (!PathExists(FLAGS_image_dir)) {
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
exit(1);
}
2021-08-11 13:04:47 +00:00
2021-08-16 08:52:21 +00:00
std::vector<cv::String> cv_all_img_names;
cv::glob(FLAGS_image_dir, cv_all_img_names);
std::cout << "total images num: " << cv_all_img_names.size() << endl;
if (strcmp(argv[1], "det")==0) {
return main_det(cv_all_img_names);
}
if (strcmp(argv[1], "rec")==0) {
return main_rec(cv_all_img_names);
}
if (strcmp(argv[1], "system")==0) {
return main_system(cv_all_img_names);
}
2021-08-11 13:04:47 +00:00
}