138 lines
4.2 KiB
C++
Raw Normal View History

2020-07-12 17:21:47 +00:00
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
#include <include/ocr_det.h>
namespace PaddleOCR {
2020-07-13 08:59:21 +00:00
void DBDetector::LoadModel(const std::string &model_dir) {
2020-07-12 17:21:47 +00:00
AnalysisConfig config;
config.SetModel(model_dir + "/model", model_dir + "/params");
2020-07-13 08:59:21 +00:00
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
} else {
config.DisableGpu();
config.EnableMKLDNN(); // 开启MKLDNN加速
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
2020-07-12 17:21:47 +00:00
2020-07-13 08:59:21 +00:00
// false for zero copy tensor
2020-07-12 17:21:47 +00:00
config.SwitchUseFeedFetchOps(false);
2020-07-13 08:59:21 +00:00
// true for multiple input
2020-07-12 17:21:47 +00:00
config.SwitchSpecifyInputNames(true);
2020-07-13 08:59:21 +00:00
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
2020-07-12 17:21:47 +00:00
this->predictor_ = CreatePaddlePredictor(config);
}
void DBDetector::Run(cv::Mat &img,
std::vector<std::vector<std::vector<int>>> &boxes) {
float ratio_h{};
float ratio_w{};
cv::Mat srcimg;
cv::Mat resize_img;
img.copyTo(srcimg);
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
2020-07-13 08:59:21 +00:00
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
2020-07-12 17:21:47 +00:00
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
2020-07-13 08:59:21 +00:00
input_t->copy_from_cpu(input.data());
2020-07-12 17:21:47 +00:00
this->predictor_->ZeroCopyRun();
std::vector<float> out_data;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
int n2 = output_shape[2];
int n3 = output_shape[3];
int n = n2 * n3;
2020-07-13 08:59:21 +00:00
std::vector<float> pred(n, 0.0);
std::vector<unsigned char> cbuf(n, ' ');
2020-07-12 17:21:47 +00:00
for (int i = 0; i < n; i++) {
pred[i] = float(out_data[i]);
cbuf[i] = (unsigned char)((out_data[i]) * 255);
}
2020-07-13 08:59:21 +00:00
cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
2020-07-12 17:21:47 +00:00
2020-07-13 08:59:21 +00:00
const double threshold = this->det_db_thresh_ * 255;
2020-07-12 17:21:47 +00:00
const double maxvalue = 255;
cv::Mat bit_map;
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
2020-07-13 08:59:21 +00:00
boxes = post_processor_.BoxesFromBitmap(
pred_map, bit_map, this->det_db_box_thresh_, this->det_db_unclip_ratio_);
2020-07-12 17:21:47 +00:00
2020-07-13 08:59:21 +00:00
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
2020-07-12 17:21:47 +00:00
//// visualization
cv::Point rook_points[boxes.size()][4];
for (int n = 0; n < boxes.size(); n++) {
for (int m = 0; m < boxes[0].size(); m++) {
rook_points[n][m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
}
}
cv::Mat img_vis;
srcimg.copyTo(img_vis);
for (int n = 0; n < boxes.size(); n++) {
const cv::Point *ppt[1] = {rook_points[n]};
int npt[] = {4};
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
}
imwrite("./det_res.png", img_vis);
std::cout << "The detection visualized image saved in ./det_res.png"
<< std::endl;
}
} // namespace PaddleOCR