2020-07-13 01:21:47 +08:00
|
|
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include <include/ocr_rec.h>
|
|
|
|
|
|
|
|
namespace PaddleOCR {
|
|
|
|
|
|
|
|
void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
|
|
|
|
cv::Mat &img) {
|
|
|
|
cv::Mat srcimg;
|
|
|
|
img.copyTo(srcimg);
|
|
|
|
cv::Mat crop_img;
|
|
|
|
cv::Mat resize_img;
|
|
|
|
|
|
|
|
std::cout << "The predicted text is :" << std::endl;
|
|
|
|
int index = 0;
|
|
|
|
for (int i = boxes.size() - 1; i >= 0; i--) {
|
2020-07-13 16:59:21 +08:00
|
|
|
crop_img = GetRotateCropImage(srcimg, boxes[i]);
|
2020-07-13 01:21:47 +08:00
|
|
|
|
|
|
|
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
|
|
|
|
|
|
|
|
this->resize_op_.Run(crop_img, resize_img, wh_ratio);
|
|
|
|
|
|
|
|
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
|
|
|
this->is_scale_);
|
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
2020-07-13 01:21:47 +08:00
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
this->permute_op_.Run(&resize_img, input.data());
|
2020-07-13 01:21:47 +08:00
|
|
|
|
|
|
|
auto input_names = this->predictor_->GetInputNames();
|
|
|
|
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
|
|
|
|
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
2020-07-13 16:59:21 +08:00
|
|
|
input_t->copy_from_cpu(input.data());
|
2020-07-13 01:21:47 +08:00
|
|
|
|
|
|
|
this->predictor_->ZeroCopyRun();
|
|
|
|
|
|
|
|
std::vector<int64_t> rec_idx;
|
|
|
|
auto output_names = this->predictor_->GetOutputNames();
|
|
|
|
auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
|
|
|
|
auto rec_idx_lod = output_t->lod();
|
|
|
|
auto shape_out = output_t->shape();
|
|
|
|
int out_num = std::accumulate(shape_out.begin(), shape_out.end(), 1,
|
|
|
|
std::multiplies<int>());
|
|
|
|
|
|
|
|
rec_idx.resize(out_num);
|
|
|
|
output_t->copy_to_cpu(rec_idx.data());
|
|
|
|
|
|
|
|
std::vector<int> pred_idx;
|
|
|
|
for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1]); n++) {
|
|
|
|
pred_idx.push_back(int(rec_idx[n]));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pred_idx.size() < 1e-3)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
index += 1;
|
|
|
|
std::cout << index << "\t";
|
|
|
|
for (int n = 0; n < pred_idx.size(); n++) {
|
|
|
|
std::cout << label_list_[pred_idx[n]];
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> predict_batch;
|
|
|
|
auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]);
|
|
|
|
|
|
|
|
auto predict_lod = output_t_1->lod();
|
|
|
|
auto predict_shape = output_t_1->shape();
|
|
|
|
int out_num_1 = std::accumulate(predict_shape.begin(), predict_shape.end(),
|
|
|
|
1, std::multiplies<int>());
|
|
|
|
|
|
|
|
predict_batch.resize(out_num_1);
|
|
|
|
output_t_1->copy_to_cpu(predict_batch.data());
|
|
|
|
|
|
|
|
int argmax_idx;
|
|
|
|
int blank = predict_shape[1];
|
|
|
|
float score = 0.f;
|
|
|
|
int count = 0;
|
|
|
|
float max_value = 0.0f;
|
|
|
|
|
|
|
|
for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
|
2020-07-13 16:59:21 +08:00
|
|
|
argmax_idx =
|
|
|
|
int(Utility::argmax(&predict_batch[n * predict_shape[1]],
|
2020-07-13 01:21:47 +08:00
|
|
|
&predict_batch[(n + 1) * predict_shape[1]]));
|
|
|
|
max_value =
|
|
|
|
float(*std::max_element(&predict_batch[n * predict_shape[1]],
|
|
|
|
&predict_batch[(n + 1) * predict_shape[1]]));
|
|
|
|
if (blank - 1 - argmax_idx > 1e-5) {
|
|
|
|
score += max_value;
|
|
|
|
count += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
score /= count;
|
|
|
|
std::cout << "\tscore: " << score << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
2020-07-13 01:21:47 +08:00
|
|
|
AnalysisConfig config;
|
|
|
|
config.SetModel(model_dir + "/model", model_dir + "/params");
|
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
if (this->use_gpu_) {
|
|
|
|
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
|
|
|
} else {
|
|
|
|
config.DisableGpu();
|
2020-07-14 13:40:35 +08:00
|
|
|
if (this->use_mkldnn_) {
|
|
|
|
config.EnableMKLDNN();
|
|
|
|
}
|
2020-07-13 16:59:21 +08:00
|
|
|
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
|
|
|
}
|
2020-07-13 01:21:47 +08:00
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
// false for zero copy tensor
|
2020-07-13 01:21:47 +08:00
|
|
|
config.SwitchUseFeedFetchOps(false);
|
2020-07-13 16:59:21 +08:00
|
|
|
// true for multiple input
|
2020-07-13 01:21:47 +08:00
|
|
|
config.SwitchSpecifyInputNames(true);
|
2020-07-13 16:59:21 +08:00
|
|
|
|
|
|
|
config.SwitchIrOptim(true);
|
|
|
|
|
|
|
|
config.EnableMemoryOptim();
|
2020-07-15 13:12:24 +08:00
|
|
|
config.DisableGlogInfo();
|
2020-07-13 01:21:47 +08:00
|
|
|
|
|
|
|
this->predictor_ = CreatePaddlePredictor(config);
|
|
|
|
}
|
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
|
|
|
|
std::vector<std::vector<int>> box) {
|
2020-07-13 01:21:47 +08:00
|
|
|
cv::Mat image;
|
|
|
|
srcimage.copyTo(image);
|
|
|
|
std::vector<std::vector<int>> points = box;
|
|
|
|
|
|
|
|
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
|
|
|
|
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
|
|
|
|
int left = int(*std::min_element(x_collect, x_collect + 4));
|
|
|
|
int right = int(*std::max_element(x_collect, x_collect + 4));
|
|
|
|
int top = int(*std::min_element(y_collect, y_collect + 4));
|
|
|
|
int bottom = int(*std::max_element(y_collect, y_collect + 4));
|
|
|
|
|
|
|
|
cv::Mat img_crop;
|
|
|
|
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
|
|
|
|
|
|
|
|
for (int i = 0; i < points.size(); i++) {
|
|
|
|
points[i][0] -= left;
|
|
|
|
points[i][1] -= top;
|
|
|
|
}
|
|
|
|
|
|
|
|
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
|
|
|
|
pow(points[0][1] - points[1][1], 2)));
|
|
|
|
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
|
|
|
|
pow(points[0][1] - points[3][1], 2)));
|
|
|
|
|
|
|
|
cv::Point2f pts_std[4];
|
|
|
|
pts_std[0] = cv::Point2f(0., 0.);
|
|
|
|
pts_std[1] = cv::Point2f(img_crop_width, 0.);
|
|
|
|
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
|
|
|
|
pts_std[3] = cv::Point2f(0.f, img_crop_height);
|
|
|
|
|
|
|
|
cv::Point2f pointsf[4];
|
|
|
|
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
|
|
|
|
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
|
|
|
|
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
|
|
|
|
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
|
|
|
|
|
|
|
|
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
|
|
|
|
|
|
|
|
cv::Mat dst_img;
|
|
|
|
cv::warpPerspective(img_crop, dst_img, M,
|
|
|
|
cv::Size(img_crop_width, img_crop_height),
|
|
|
|
cv::BORDER_REPLICATE);
|
|
|
|
|
|
|
|
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
|
|
|
|
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
|
|
|
|
cv::transpose(dst_img, srcCopy);
|
|
|
|
cv::flip(srcCopy, srcCopy, 0);
|
|
|
|
return srcCopy;
|
|
|
|
} else {
|
|
|
|
return dst_img;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-07-15 13:12:24 +08:00
|
|
|
} // namespace PaddleOCR
|