2020-07-13 01:21:47 +08:00
|
|
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include <include/ocr_rec.h>
|
|
|
|
|
|
|
|
namespace PaddleOCR {
|
|
|
|
|
2021-08-16 16:52:21 +08:00
|
|
|
void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
|
2020-07-13 01:21:47 +08:00
|
|
|
cv::Mat srcimg;
|
|
|
|
img.copyTo(srcimg);
|
|
|
|
cv::Mat resize_img;
|
|
|
|
|
2021-08-10 15:58:01 +08:00
|
|
|
float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
|
2021-08-16 16:52:21 +08:00
|
|
|
auto preprocess_start = std::chrono::steady_clock::now();
|
2021-08-10 15:58:01 +08:00
|
|
|
this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
|
2020-07-13 01:21:47 +08:00
|
|
|
|
2021-08-10 15:58:01 +08:00
|
|
|
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
|
|
|
this->is_scale_);
|
|
|
|
|
|
|
|
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
|
|
|
|
|
|
|
this->permute_op_.Run(&resize_img, input.data());
|
2021-08-16 16:52:21 +08:00
|
|
|
auto preprocess_end = std::chrono::steady_clock::now();
|
2021-08-10 15:58:01 +08:00
|
|
|
|
|
|
|
// Inference.
|
|
|
|
auto input_names = this->predictor_->GetInputNames();
|
|
|
|
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
|
|
|
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
2021-08-17 11:55:00 +08:00
|
|
|
auto inference_start = std::chrono::steady_clock::now();
|
2021-08-10 15:58:01 +08:00
|
|
|
input_t->CopyFromCpu(input.data());
|
|
|
|
this->predictor_->Run();
|
|
|
|
|
|
|
|
std::vector<float> predict_batch;
|
|
|
|
auto output_names = this->predictor_->GetOutputNames();
|
|
|
|
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
|
|
|
auto predict_shape = output_t->shape();
|
|
|
|
|
|
|
|
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
|
|
|
std::multiplies<int>());
|
|
|
|
predict_batch.resize(out_num);
|
|
|
|
|
|
|
|
output_t->CopyToCpu(predict_batch.data());
|
2021-08-16 16:52:21 +08:00
|
|
|
auto inference_end = std::chrono::steady_clock::now();
|
2021-08-10 15:58:01 +08:00
|
|
|
|
|
|
|
// ctc decode
|
2021-08-16 16:52:21 +08:00
|
|
|
auto postprocess_start = std::chrono::steady_clock::now();
|
2021-08-10 15:58:01 +08:00
|
|
|
std::vector<std::string> str_res;
|
|
|
|
int argmax_idx;
|
|
|
|
int last_index = 0;
|
|
|
|
float score = 0.f;
|
|
|
|
int count = 0;
|
|
|
|
float max_value = 0.0f;
|
|
|
|
|
|
|
|
for (int n = 0; n < predict_shape[1]; n++) {
|
|
|
|
argmax_idx =
|
|
|
|
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
|
|
|
|
&predict_batch[(n + 1) * predict_shape[2]]));
|
|
|
|
max_value =
|
|
|
|
float(*std::max_element(&predict_batch[n * predict_shape[2]],
|
|
|
|
&predict_batch[(n + 1) * predict_shape[2]]));
|
|
|
|
|
|
|
|
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
|
|
|
score += max_value;
|
|
|
|
count += 1;
|
|
|
|
str_res.push_back(label_list_[argmax_idx]);
|
2020-11-17 12:54:24 +08:00
|
|
|
}
|
2021-08-10 15:58:01 +08:00
|
|
|
last_index = argmax_idx;
|
|
|
|
}
|
2021-08-17 11:55:00 +08:00
|
|
|
auto postprocess_end = std::chrono::steady_clock::now();
|
2021-08-10 15:58:01 +08:00
|
|
|
score /= count;
|
|
|
|
for (int i = 0; i < str_res.size(); i++) {
|
|
|
|
std::cout << str_res[i];
|
2020-07-13 01:21:47 +08:00
|
|
|
}
|
2021-08-10 15:58:01 +08:00
|
|
|
std::cout << "\tscore: " << score << std::endl;
|
2021-08-16 16:52:21 +08:00
|
|
|
|
|
|
|
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
|
|
|
|
times->push_back(double(preprocess_diff.count() * 1000));
|
|
|
|
std::chrono::duration<float> inference_diff = inference_end - inference_start;
|
|
|
|
times->push_back(double(inference_diff.count() * 1000));
|
|
|
|
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
|
|
|
|
times->push_back(double(postprocess_diff.count() * 1000));
|
2020-07-13 01:21:47 +08:00
|
|
|
}
|
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
2020-12-21 21:41:33 +08:00
|
|
|
// AnalysisConfig config;
|
|
|
|
paddle_infer::Config config;
|
2020-12-09 23:55:38 +08:00
|
|
|
config.SetModel(model_dir + "/inference.pdmodel",
|
|
|
|
model_dir + "/inference.pdiparams");
|
2020-07-13 01:21:47 +08:00
|
|
|
|
2020-07-13 16:59:21 +08:00
|
|
|
if (this->use_gpu_) {
|
|
|
|
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
2020-12-27 17:48:18 +08:00
|
|
|
if (this->use_tensorrt_) {
|
2021-08-16 16:52:21 +08:00
|
|
|
auto precision = paddle_infer::Config::Precision::kFloat32;
|
|
|
|
if (this->precision_ == "fp16") {
|
|
|
|
precision = paddle_infer::Config::Precision::kHalf;
|
|
|
|
}
|
|
|
|
if (this->precision_ == "int8") {
|
|
|
|
precision = paddle_infer::Config::Precision::kInt8;
|
|
|
|
}
|
2020-12-27 17:48:18 +08:00
|
|
|
config.EnableTensorRtEngine(
|
|
|
|
1 << 20, 10, 3,
|
2021-08-16 16:52:21 +08:00
|
|
|
precision,
|
2020-12-27 17:48:18 +08:00
|
|
|
false, false);
|
2021-09-24 19:11:03 +08:00
|
|
|
|
2021-05-26 15:56:06 +08:00
|
|
|
std::map<std::string, std::vector<int>> min_input_shape = {
|
2021-09-24 19:11:03 +08:00
|
|
|
{"x", {1, 3, 32, 10}},
|
|
|
|
{"lstm_0.tmp_0", {10, 1, 96}}};
|
2021-05-26 15:56:06 +08:00
|
|
|
std::map<std::string, std::vector<int>> max_input_shape = {
|
2021-09-24 19:11:03 +08:00
|
|
|
{"x", {1, 3, 32, 2000}},
|
|
|
|
{"lstm_0.tmp_0", {1000, 1, 96}}};
|
2021-05-26 15:56:06 +08:00
|
|
|
std::map<std::string, std::vector<int>> opt_input_shape = {
|
2021-09-24 19:11:03 +08:00
|
|
|
{"x", {1, 3, 32, 320}},
|
|
|
|
{"lstm_0.tmp_0", {25, 1, 96}}};
|
2021-05-26 15:56:06 +08:00
|
|
|
|
|
|
|
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
|
|
|
opt_input_shape);
|
2020-12-27 17:48:18 +08:00
|
|
|
}
|
2020-07-13 16:59:21 +08:00
|
|
|
} else {
|
|
|
|
config.DisableGpu();
|
2020-07-14 13:40:35 +08:00
|
|
|
if (this->use_mkldnn_) {
|
|
|
|
config.EnableMKLDNN();
|
2020-11-17 12:54:24 +08:00
|
|
|
// cache 10 different shapes for mkldnn to avoid memory leak
|
|
|
|
config.SetMkldnnCacheCapacity(10);
|
2020-07-14 13:40:35 +08:00
|
|
|
}
|
2020-07-13 16:59:21 +08:00
|
|
|
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
|
|
|
}
|
2020-07-13 01:21:47 +08:00
|
|
|
|
2020-12-21 21:41:33 +08:00
|
|
|
config.SwitchUseFeedFetchOps(false);
|
2020-07-13 16:59:21 +08:00
|
|
|
// true for multiple input
|
2020-07-13 01:21:47 +08:00
|
|
|
config.SwitchSpecifyInputNames(true);
|
2020-07-13 16:59:21 +08:00
|
|
|
|
|
|
|
config.SwitchIrOptim(true);
|
|
|
|
|
|
|
|
config.EnableMemoryOptim();
|
2021-09-24 19:11:03 +08:00
|
|
|
// config.DisableGlogInfo();
|
2020-07-13 01:21:47 +08:00
|
|
|
|
2020-12-21 21:41:33 +08:00
|
|
|
this->predictor_ = CreatePredictor(config);
|
2020-07-13 01:21:47 +08:00
|
|
|
}
|
|
|
|
|
2021-01-07 19:27:22 +08:00
|
|
|
} // namespace PaddleOCR
|