PaddleOCR/deploy/hubserving/structure_layout/module.py

149 lines
4.8 KiB
Python
Raw Normal View History

2022-08-23 16:11:18 +08:00
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
2022-08-23 16:11:18 +08:00
sys.path.insert(0, ".")
import copy
import time
import paddlehub
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub
from tools.infer.utility import base64_to_cv2
from ppstructure.layout.predict_layout import LayoutPredictor as _LayoutPredictor
from ppstructure.utility import parse_args
from deploy.hubserving.structure_layout.params import read_params
@moduleinfo(
name="structure_layout",
version="1.0.0",
summary="PP-Structure layout service",
author="paddle-dev",
author_email="paddle-dev@baidu.com",
type="cv/structure_layout",
)
2022-08-23 16:11:18 +08:00
class LayoutPredictor(hub.Module):
def _initialize(self, use_gpu=False, enable_mkldnn=False):
"""
initialize with the necessary elements
"""
cfg = self.merge_configs()
cfg.use_gpu = use_gpu
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
print("use gpu: ", use_gpu)
print("CUDA_VISIBLE_DEVICES: ", _places)
cfg.gpu_mem = 8000
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
)
cfg.ir_optim = True
cfg.enable_mkldnn = enable_mkldnn
self.layout_predictor = _LayoutPredictor(cfg)
def merge_configs(self):
2025-03-04 09:38:37 +08:00
# default cfg
2022-08-23 16:11:18 +08:00
backup_argv = copy.deepcopy(sys.argv)
sys.argv = sys.argv[:1]
cfg = parse_args()
update_cfg_map = vars(read_params())
for key in update_cfg_map:
cfg.__setattr__(key, update_cfg_map[key])
sys.argv = copy.deepcopy(backup_argv)
return cfg
def read_images(self, paths=[]):
images = []
for img_path in paths:
assert os.path.isfile(img_path), "The {} isn't a valid file.".format(
img_path
)
2022-08-23 16:11:18 +08:00
img = cv2.imread(img_path)
if img is None:
logger.info("error in loading image:{}".format(img_path))
continue
images.append(img)
return images
def predict(self, images=[], paths=[]):
"""
Get the chinese texts in the predicted images.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
paths (list[str]): The paths of images. If paths not images
Returns:
res (list): The layout results of images.
"""
if images != [] and isinstance(images, list) and paths == []:
predicted_data = images
elif images == [] and isinstance(paths, list) and paths != []:
predicted_data = self.read_images(paths)
else:
raise TypeError("The input data is inconsistent with expectations.")
assert (
predicted_data != []
), "There is not any image to be predicted. Please check the input data."
2022-08-23 16:11:18 +08:00
all_results = []
for img in predicted_data:
if img is None:
logger.info("error in loading image")
all_results.append([])
continue
starttime = time.time()
res, _ = self.layout_predictor(img)
elapse = time.time() - starttime
logger.info("Predict time: {}".format(elapse))
for item in res:
item["bbox"] = item["bbox"].tolist()
all_results.append({"layout": res})
2022-08-23 16:11:18 +08:00
return all_results
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.predict(images_decode, **kwargs)
return results
if __name__ == "__main__":
2022-08-23 16:11:18 +08:00
layout = LayoutPredictor()
layout._initialize()
image_path = ["./ppstructure/docs/table/1.png"]
2022-08-23 16:11:18 +08:00
res = layout.predict(paths=image_path)
print(res)