2022-04-13 14:06:05 +08:00
|
|
|
|
# DB
|
|
|
|
|
|
|
|
|
|
- [1. 算法简介](#1)
|
|
|
|
|
- [2. 环境配置](#2)
|
2022-04-14 19:21:03 +08:00
|
|
|
|
- [3. 模型训练、评估、预测](#3)
|
|
|
|
|
- [3.1 训练](#3-1)
|
|
|
|
|
- [3.2 评估](#3-2)
|
|
|
|
|
- [3.3 预测](#3-3)
|
|
|
|
|
- [4. 推理部署](#4)
|
|
|
|
|
- [4.1 Python推理](#4-1)
|
|
|
|
|
- [4.2 C++推理](#4-2)
|
|
|
|
|
- [4.3 Serving服务化部署](#4-3)
|
|
|
|
|
- [4.4 更多推理部署](#4-4)
|
|
|
|
|
- [5. FAQ](#5)
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
|
|
|
|
<a name="1"></a>
|
|
|
|
|
## 1. 算法简介
|
|
|
|
|
|
|
|
|
|
论文信息:
|
|
|
|
|
> [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947)
|
|
|
|
|
> Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
|
|
|
|
|
> AAAI, 2020
|
|
|
|
|
|
|
|
|
|
在ICDAR2015文本检测公开数据集上,算法复现效果如下:
|
|
|
|
|
|
2022-04-18 20:58:25 +08:00
|
|
|
|
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
|
|
|
|
| --- | --- | --- | --- | --- | --- | --- |
|
2022-04-27 18:59:49 +08:00
|
|
|
|
|DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
|
|
|
|
|DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="2"></a>
|
|
|
|
|
## 2. 环境配置
|
2022-04-18 20:58:25 +08:00
|
|
|
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="3"></a>
|
2022-04-14 19:21:03 +08:00
|
|
|
|
## 3. 模型训练、评估、预测
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
2022-04-18 20:58:25 +08:00
|
|
|
|
请参考[文本检测训练教程](./detection.md)。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="4"></a>
|
2022-04-14 19:21:03 +08:00
|
|
|
|
## 4. 推理部署
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
2022-04-14 19:21:03 +08:00
|
|
|
|
<a name="4-1"></a>
|
|
|
|
|
### 4.1 Python推理
|
2022-04-13 14:06:05 +08:00
|
|
|
|
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
|
|
|
|
|
|
2022-04-26 14:58:07 +08:00
|
|
|
|
```shell
|
2022-04-13 14:06:05 +08:00
|
|
|
|
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
DB文本检测模型推理,可以执行如下命令:
|
|
|
|
|
|
2022-04-26 14:58:07 +08:00
|
|
|
|
```shell
|
2022-04-13 14:06:05 +08:00
|
|
|
|
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
|
|
|
|
|
|
2022-04-14 19:21:03 +08:00
|
|
|
|
<a name="4-2"></a>
|
|
|
|
|
### 4.2 C++推理
|
2022-04-26 14:58:07 +08:00
|
|
|
|
|
|
|
|
|
准备好推理模型后,参考[cpp infer](../../deploy/cpp_infer/)教程进行操作即可。
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
2022-04-14 19:21:03 +08:00
|
|
|
|
<a name="4-3"></a>
|
|
|
|
|
### 4.3 Serving服务化部署
|
2022-04-26 14:58:07 +08:00
|
|
|
|
|
|
|
|
|
准备好推理模型后,参考[pdserving](../../deploy/pdserving/)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
2022-04-14 19:21:03 +08:00
|
|
|
|
<a name="4-4"></a>
|
|
|
|
|
### 4.4 更多推理部署
|
2022-04-26 14:58:07 +08:00
|
|
|
|
|
|
|
|
|
DB模型还支持以下推理部署方式:
|
|
|
|
|
|
|
|
|
|
- Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
2022-04-14 19:21:03 +08:00
|
|
|
|
<a name="5"></a>
|
|
|
|
|
## 5. FAQ
|
2022-04-13 14:06:05 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 引用
|
|
|
|
|
|
|
|
|
|
```bibtex
|
|
|
|
|
@inproceedings{liao2020real,
|
|
|
|
|
title={Real-time scene text detection with differentiable binarization},
|
|
|
|
|
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
|
|
|
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
|
|
|
|
volume={34},
|
|
|
|
|
number={07},
|
|
|
|
|
pages={11474--11481},
|
|
|
|
|
year={2020}
|
|
|
|
|
}
|
|
|
|
|
```
|