PaddleOCR/doc/doc_ch/algorithm_overview.md

197 lines
13 KiB
Markdown
Raw Normal View History

2022-08-22 21:15:19 +08:00
# 前沿算法与模型
2021-11-09 20:02:29 +08:00
- [1. 两阶段OCR算法](#1)
2022-07-05 17:31:53 +08:00
- [1.1 文本检测算法](#11)
- [1.2 文本识别算法](#12)
- [1.3 文本超分辨率算法](#13)
- [1.4 公式识别算法](#14)
- [2. 端到端OCR算法](#2)
2022-07-05 17:31:53 +08:00
- [3. 表格识别算法](#3)
- [4. 关键信息抽取算法](#4)
2022-04-08 15:42:06 +08:00
2022-08-22 21:38:31 +08:00
本文给出了PaddleOCR已支持的OCR算法列表以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCRv3 系列模型下载](./models_list.md)。
2021-11-09 20:02:29 +08:00
2022-08-22 21:15:19 +08:00
>>
PaddleOCR将**持续新增**支持OCR领域前沿算法与模型**欢迎广大开发者合作共建,贡献更多算法,合入有奖🎁!具体可查看[社区常规赛](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)。**
>>
新增算法可参考教程:[使用PaddleOCR架构添加新算法](./add_new_algorithm.md)
2021-11-09 20:02:29 +08:00
<a name="1"></a>
2022-04-08 15:42:06 +08:00
## 1. 两阶段算法
2020-10-13 17:49:16 +08:00
2021-11-09 20:02:29 +08:00
<a name="11"></a>
2020-10-13 17:49:16 +08:00
2021-11-09 20:02:29 +08:00
### 1.1 文本检测算法
2020-10-13 17:49:16 +08:00
2022-04-13 14:06:05 +08:00
已支持的文本检测算法列表(戳链接获取使用教程):
- [x] [DB与DB++](./algorithm_det_db.md)
2022-04-13 14:06:05 +08:00
- [x] [EAST](./algorithm_det_east.md)
- [x] [SAST](./algorithm_det_sast.md)
- [x] [PSENet](./algorithm_det_psenet.md)
- [x] [FCENet](./algorithm_det_fcenet.md)
2022-10-10 15:52:30 +08:00
- [x] [DRRG](./algorithm_det_drrg.md)
- [x] [CT](./algorithm_det_ct.md)
2020-10-13 17:49:16 +08:00
在ICDAR2015文本检测公开数据集上算法效果如下
2022-04-13 14:06:05 +08:00
2020-10-13 17:49:16 +08:00
|模型|骨干网络|precision|recall|Hmean|下载链接|
2020-12-15 22:49:13 +08:00
| --- | --- | --- | --- | --- | --- |
2022-01-06 18:15:46 +08:00
|EAST|ResNet50_vd|88.71%|81.36%|84.88%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
2022-10-24 12:14:51 +08:00
|EAST|MobileNetV3|78.20%|79.10%|78.65%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
2021-11-10 14:51:25 +08:00
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
|DB++|ResNet50|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
2020-10-13 17:49:16 +08:00
在Total-text文本检测公开数据集上算法效果如下
|模型|骨干网络|precision|recall|Hmean|下载链接|
2020-12-15 22:49:13 +08:00
| --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
|CT|ResNet18_vd|88.68%|81.70%|85.05%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r18_ct_train.tar)|
2020-10-13 17:49:16 +08:00
2022-02-17 19:35:33 +08:00
在CTW1500文本检测公开数据集上算法效果如下
|模型|骨干网络|precision|recall|Hmean|下载链接|
2022-05-10 16:18:31 +08:00
| --- | --- | --- | --- | --- | --- |
2022-03-01 16:14:56 +08:00
|FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)|
2022-10-20 17:05:53 +08:00
|DRRG|ResNet50_vd|89.92%|80.91%|85.18%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_drrg_ctw_train.tar)|
2022-02-17 19:35:33 +08:00
2021-03-18 10:29:11 +08:00
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
2020-10-13 17:49:16 +08:00
2022-04-08 15:42:06 +08:00
2021-11-09 20:02:29 +08:00
<a name="12"></a>
2020-10-13 17:49:16 +08:00
2021-11-09 20:02:29 +08:00
### 1.2 文本识别算法
2020-10-13 17:49:16 +08:00
2022-04-13 14:06:05 +08:00
已支持的文本识别算法列表(戳链接获取使用教程):
- [x] [CRNN](./algorithm_rec_crnn.md)
- [x] [Rosetta](./algorithm_rec_rosetta.md)
- [x] [STAR-Net](./algorithm_rec_starnet.md)
- [x] [RARE](./algorithm_rec_rare.md)
- [x] [SRN](./algorithm_rec_srn.md)
- [x] [NRTR](./algorithm_rec_nrtr.md)
- [x] [SAR](./algorithm_rec_sar.md)
- [x] [SEED](./algorithm_rec_seed.md)
2022-05-10 16:18:31 +08:00
- [x] [SVTR](./algorithm_rec_svtr.md)
2022-05-27 14:49:52 +08:00
- [x] [ViTSTR](./algorithm_rec_vitstr.md)
2022-06-22 22:19:55 +08:00
- [x] [ABINet](./algorithm_rec_abinet.md)
- [x] [VisionLAN](./algorithm_rec_visionlan.md)
2022-06-12 13:53:29 +08:00
- [x] [SPIN](./algorithm_rec_spin.md)
2022-05-22 13:16:52 +08:00
- [x] [RobustScanner](./algorithm_rec_robustscanner.md)
2022-09-29 14:21:47 +08:00
- [x] [RFL](./algorithm_rec_rfl.md)
Add new recognition method "ParseQ" (#10836) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md (#10616) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update README.md * Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:Release/2.7 (#10655) * Don't break overall processing on a bad image * Add preprocessing common to OCR tasks Add preprocessing to options * Update requirements.txt (#10656) added missing pyyaml library * [TIPC]update xpu tipc script (#10658) * fix-typo (#10642) Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> * 修改数据增强导致的DSR报错 (#10662) (#10681) * 修改数据增强导致的DSR报错 * 错误修改回滚 * Update algorithm_overview_en.md (#10670) Fixed simple spelling errors. * Implement recoginition method ParseQ * Document update for new recognition method ParseQ * add prediction for parseq * Update rec_vit_parseq.yml * Update rec_r31_sar.yml * Update rec_r31_sar.yml * Update rec_r50_fpn_srn.yml * Update rec_vit_parseq.py * Update rec_vit_parseq.yml * Update rec_parseq_head.py * Update rec_img_aug.py * Update rec_vit_parseq.yml * Update __init__.py * Update predict_rec.py * Update paddleocr.py * Update requirements.txt * Update utility.py * Update utility.py --------- Co-authored-by: xiaoting <31891223+tink2123@users.noreply.github.com> Co-authored-by: topduke <784990967@qq.com> Co-authored-by: dyning <dyning.2003@163.com> Co-authored-by: UserUnknownFactor <63057995+UserUnknownFactor@users.noreply.github.com> Co-authored-by: itasli <ilyas.tasli@outlook.fr> Co-authored-by: Kai Song <50285351+USTCKAY@users.noreply.github.com> Co-authored-by: dvorst <87502756+dvorst@users.noreply.github.com> Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> Co-authored-by: Dec20B <1192152456@qq.com> Co-authored-by: ncoffman <51147417+ncoffman@users.noreply.github.com>
2023-09-07 16:36:47 +08:00
- [x] [ParseQ](./algorithm_rec_parseq.md)
- [x] [CPPD](./algorithm_rec_cppd.md)
2023-12-27 19:41:17 +08:00
- [x] [SATRN](./algorithm_rec_satrn.md)
2020-10-13 17:49:16 +08:00
2021-12-30 21:30:37 +08:00
参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程使用MJSynth和SynthText两个文字识别数据集训练在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估算法效果如下
2020-10-13 17:49:16 +08:00
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
2021-01-20 18:22:53 +08:00
|---|---|---|---|---|
2022-01-17 17:54:20 +08:00
|Rosetta|Resnet34_vd|79.11%|rec_r34_vd_none_none_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|75.80%|rec_mv3_none_none_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|81.04%|rec_r34_vd_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|77.95%|rec_mv3_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|StarNet|Resnet34_vd|82.85%|rec_r34_vd_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|79.28%|rec_mv3_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|RARE|Resnet34_vd|83.98%|rec_r34_vd_tps_bilstm_att |[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|RARE|MobileNetV3|81.76%|rec_mv3_tps_bilstm_att |[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 86.31% | rec_r50fpn_vd_none_srn | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|NRTR|NRTR_MTB| 84.21% | rec_mtb_nrtr | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
|SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) |
|SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) |
2022-05-10 16:18:31 +08:00
|SVTR|SVTR-Tiny| 89.25% | rec_svtr_tiny_none_ctc_en | [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) |
2022-06-29 20:08:45 +08:00
|ViTSTR|ViTSTR| 79.82% | rec_vitstr_none_ce | [训练模型](https://paddleocr.bj.bcebos.com/rec_vitstr_none_ce_train.tar) |
|ABINet|Resnet45| 90.75% | rec_r45_abinet | [训练模型](https://paddleocr.bj.bcebos.com/rec_r45_abinet_train.tar) |
2022-10-19 17:12:12 +08:00
|VisionLAN|Resnet45| 90.30% | rec_r45_visionlan | [训练模型](https://paddleocr.bj.bcebos.com/VisionLAN/rec_r45_visionlan_train.tar) |
|SPIN|ResNet32| 90.00% | rec_r32_gaspin_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_r32_gaspin_bilstm_att.tar) |
|RobustScanner|ResNet31| 87.77% | rec_r31_robustscanner | [训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_r31_robustscanner.tar)|
2022-10-13 14:23:53 +08:00
|RFL|ResNetRFL| 88.63% | rec_resnet_rfl_att | [训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_resnet_rfl_att_train.tar) |
Add new recognition method "ParseQ" (#10836) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md (#10616) * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update PP-OCRv4_introduction.md * Update README.md * Cherrypicking GH-10217 and GH-10216 to PaddlePaddle:Release/2.7 (#10655) * Don't break overall processing on a bad image * Add preprocessing common to OCR tasks Add preprocessing to options * Update requirements.txt (#10656) added missing pyyaml library * [TIPC]update xpu tipc script (#10658) * fix-typo (#10642) Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> * 修改数据增强导致的DSR报错 (#10662) (#10681) * 修改数据增强导致的DSR报错 * 错误修改回滚 * Update algorithm_overview_en.md (#10670) Fixed simple spelling errors. * Implement recoginition method ParseQ * Document update for new recognition method ParseQ * add prediction for parseq * Update rec_vit_parseq.yml * Update rec_r31_sar.yml * Update rec_r31_sar.yml * Update rec_r50_fpn_srn.yml * Update rec_vit_parseq.py * Update rec_vit_parseq.yml * Update rec_parseq_head.py * Update rec_img_aug.py * Update rec_vit_parseq.yml * Update __init__.py * Update predict_rec.py * Update paddleocr.py * Update requirements.txt * Update utility.py * Update utility.py --------- Co-authored-by: xiaoting <31891223+tink2123@users.noreply.github.com> Co-authored-by: topduke <784990967@qq.com> Co-authored-by: dyning <dyning.2003@163.com> Co-authored-by: UserUnknownFactor <63057995+UserUnknownFactor@users.noreply.github.com> Co-authored-by: itasli <ilyas.tasli@outlook.fr> Co-authored-by: Kai Song <50285351+USTCKAY@users.noreply.github.com> Co-authored-by: dvorst <87502756+dvorst@users.noreply.github.com> Co-authored-by: Dennis <dvorst@users.noreply.github.com> Co-authored-by: shiyutang <34859558+shiyutang@users.noreply.github.com> Co-authored-by: Dec20B <1192152456@qq.com> Co-authored-by: ncoffman <51147417+ncoffman@users.noreply.github.com>
2023-09-07 16:36:47 +08:00
|ParseQ|VIT| 91.24% | rec_vit_parseq_synth | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz) |
|CPPD|SVTR-Base| 93.8% | rec_svtrnet_cppd_base_en | [训练模型](https://paddleocr.bj.bcebos.com/CCPD/rec_svtr_cppd_base_en_train.tar) |
2023-12-27 19:41:17 +08:00
|SATRN|ShallowCNN| 88.05% | rec_satrn | [训练模型](https://pan.baidu.com/s/10J-Bsd881bimKaclKszlaQ?pwd=lk8a) |
<a name="13"></a>
### 1.3 文本超分辨率算法
已支持的文本超分辨率算法列表(戳链接获取使用教程):
- [x] [Text Gestalt](./algorithm_sr_gestalt.md)
- [x] [Text Telescope](./algorithm_sr_telescope.md)
在TextZoom公开数据集上算法效果如下
|模型|骨干网络|PSNR_Avg|SSIM_Avg|配置文件|下载链接|
|---|---|---|---|---|---|
|Text Gestalt|tsrn|19.28|0.6560| [configs/sr/sr_tsrn_transformer_strock.yml](../../configs/sr/sr_tsrn_transformer_strock.yml)|[训练模型](https://paddleocr.bj.bcebos.com/sr_tsrn_transformer_strock_train.tar)|
|Text Telescope|tbsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[训练模型](https://paddleocr.bj.bcebos.com/contribution/sr_telescope_train.tar)|
<a name="14"></a>
### 1.4 公式识别算法
已支持的公式识别算法列表(戳链接获取使用教程):
2023-02-07 14:35:50 +08:00
- [x] [CAN](./algorithm_rec_can.md)
在CROHME手写公式数据集上算法效果如下
|模型 |骨干网络|配置文件|ExpRate|下载链接|
| ----- | ----- | ----- | ----- | ----- |
|CAN|DenseNet|[rec_d28_can.yml](../../configs/rec/rec_d28_can.yml)|51.72%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/rec_d28_can_train.tar)|
2021-11-09 20:02:29 +08:00
<a name="2"></a>
2022-04-08 15:42:06 +08:00
## 2. 端到端算法
2022-04-13 14:06:05 +08:00
已支持的端到端OCR算法列表戳链接获取使用教程
- [x] [PGNet](./algorithm_e2e_pgnet.md)
2022-07-04 18:22:25 +08:00
2022-07-05 17:31:53 +08:00
<a name="3"></a>
2022-07-04 18:22:25 +08:00
## 3. 表格识别算法
已支持的表格识别算法列表(戳链接获取使用教程):
- [x] [TableMaster](./algorithm_table_master.md)
在PubTabNet表格识别公开数据集上算法效果如下
|模型|骨干网络|配置文件|acc|下载链接|
|---|---|---|---|---|
2022-07-05 10:51:07 +08:00
|TableMaster|TableResNetExtra|[configs/table/table_master.yml](../../configs/table/table_master.yml)|77.47%|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_train.tar) / [推理模型](https://paddleocr.bj.bcebos.com/ppstructure/models/tablemaster/table_structure_tablemaster_infer.tar)|
## 4. 关键信息抽取算法
已支持的关键信息抽取算法列表(戳链接获取使用教程):
2022-08-24 17:44:52 +08:00
- [x] [VI-LayoutXLM](./algorithm_kie_vi_layoutxlm.md)
- [x] [LayoutLM](./algorithm_kie_layoutxlm.md)
- [x] [LayoutLMv2](./algorithm_kie_layoutxlm.md)
- [x] [LayoutXLM](./algorithm_kie_layoutxlm.md)
- [x] [SDMGR](././algorithm_kie_sdmgr.md)
在wildreceipt发票公开数据集上算法复现效果如下
|模型|骨干网络|配置文件|hmean|下载链接|
| --- | --- | --- | --- | --- |
2022-10-24 12:14:51 +08:00
|SDMGR|VGG6|[configs/kie/sdmgr/kie_unet_sdmgr.yml](../../configs/kie/sdmgr/kie_unet_sdmgr.yml)|86.70%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar)|
在XFUND_zh公开数据集上算法效果如下
|模型|骨干网络|任务|配置文件|hmean|下载链接|
| --- | --- | --- | --- | --- | --- |
|VI-LayoutXLM| VI-LayoutXLM-base | SER | [ser_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml)|**93.19%**|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar)|
|LayoutXLM| LayoutXLM-base | SER | [ser_layoutxlm_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutxlm_xfund_zh.yml)|90.38%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar)|
|LayoutLM| LayoutLM-base | SER | [ser_layoutlm_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutlm_xfund_zh.yml)|77.31%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar)|
|LayoutLMv2| LayoutLMv2-base | SER | [ser_layoutlmv2_xfund_zh.yml](../../configs/kie/layoutlm_series/ser_layoutlmv2_xfund_zh.yml)|85.44%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar)|
|VI-LayoutXLM| VI-LayoutXLM-base | RE | [re_vi_layoutxlm_xfund_zh_udml.yml](../../configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh_udml.yml)|**83.92%**|[训练模型](https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar)|
|LayoutXLM| LayoutXLM-base | RE | [re_layoutxlm_xfund_zh.yml](../../configs/kie/layoutlm_series/re_layoutxlm_xfund_zh.yml)|74.83%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar)|
|LayoutLMv2| LayoutLMv2-base | RE | [re_layoutlmv2_xfund_zh.yml](../../configs/kie/layoutlm_series/re_layoutlmv2_xfund_zh.yml)|67.77%|[训练模型](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar)|