124 lines
4.2 KiB
Markdown
124 lines
4.2 KiB
Markdown
|
# PasreQ
|
|||
|
|
|||
|
- [1. Introduction](#1)
|
|||
|
- [2. Environment](#2)
|
|||
|
- [3. Model Training / Evaluation / Prediction](#3)
|
|||
|
- [3.1 Training](#3-1)
|
|||
|
- [3.2 Evaluation](#3-2)
|
|||
|
- [3.3 Prediction](#3-3)
|
|||
|
- [4. Inference and Deployment](#4)
|
|||
|
- [4.1 Python Inference](#4-1)
|
|||
|
- [4.2 C++ Inference](#4-2)
|
|||
|
- [4.3 Serving](#4-3)
|
|||
|
- [4.4 More](#4-4)
|
|||
|
- [5. FAQ](#5)
|
|||
|
|
|||
|
<a name="1"></a>
|
|||
|
## 1. Introduction
|
|||
|
|
|||
|
Paper:
|
|||
|
> [Scene Text Recognition with Permuted Autoregressive Sequence Models](https://arxiv.org/abs/2207.06966)
|
|||
|
> Darwin Bautista, Rowel Atienza
|
|||
|
> ECCV, 2021
|
|||
|
|
|||
|
Using real datasets (real) and synthetic datsets (synth) for training respectively,and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets.
|
|||
|
- The real datasets include COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR and OpenVINO datasets.
|
|||
|
- The synthesis datasets include MJSynth and SynthText datasets.
|
|||
|
|
|||
|
the algorithm reproduction effect is as follows:
|
|||
|
|
|||
|
|Training Dataset|Model|Backbone|config|Acc|Download link|
|
|||
|
| --- | --- | --- | --- | --- | --- |
|
|||
|
|Synth|ParseQ|VIT|[rec_vit_parseq.yml](../../configs/rec/rec_vit_parseq.yml)|91.24%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz)|
|
|||
|
|Real|ParseQ|VIT|[rec_vit_parseq.yml](../../configs/rec/rec_vit_parseq.yml)|94.74%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz)|
|
|||
|
|||||||
|
|||
|
|
|||
|
<a name="2"></a>
|
|||
|
## 2. Environment
|
|||
|
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
|
|||
|
|
|||
|
|
|||
|
<a name="3"></a>
|
|||
|
## 3. Model Training / Evaluation / Prediction
|
|||
|
|
|||
|
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
|
|||
|
|
|||
|
Training:
|
|||
|
|
|||
|
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
|
|||
|
|
|||
|
```
|
|||
|
#Single GPU training (long training period, not recommended)
|
|||
|
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml
|
|||
|
|
|||
|
#Multi GPU training, specify the gpu number through the --gpus parameter
|
|||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml
|
|||
|
```
|
|||
|
|
|||
|
Evaluation:
|
|||
|
|
|||
|
```
|
|||
|
# GPU evaluation
|
|||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|||
|
```
|
|||
|
|
|||
|
Prediction:
|
|||
|
|
|||
|
```
|
|||
|
# The configuration file used for prediction must match the training
|
|||
|
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
|||
|
```
|
|||
|
|
|||
|
<a name="4"></a>
|
|||
|
## 4. Inference and Deployment
|
|||
|
|
|||
|
<a name="4-1"></a>
|
|||
|
### 4.1 Python Inference
|
|||
|
First, the model saved during the SAR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz) ), you can use the following command to convert:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq
|
|||
|
```
|
|||
|
|
|||
|
For SAR text recognition model inference, the following commands can be executed:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False
|
|||
|
```
|
|||
|
|
|||
|
<a name="4-2"></a>
|
|||
|
### 4.2 C++ Inference
|
|||
|
|
|||
|
Not supported
|
|||
|
|
|||
|
<a name="4-3"></a>
|
|||
|
### 4.3 Serving
|
|||
|
|
|||
|
Not supported
|
|||
|
|
|||
|
<a name="4-4"></a>
|
|||
|
### 4.4 More
|
|||
|
|
|||
|
Not supported
|
|||
|
|
|||
|
<a name="5"></a>
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
|
|||
|
## Citation
|
|||
|
|
|||
|
```bibtex
|
|||
|
@InProceedings{bautista2022parseq,
|
|||
|
title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
|
|||
|
author={Bautista, Darwin and Atienza, Rowel},
|
|||
|
booktitle={European Conference on Computer Vision},
|
|||
|
pages={178--196},
|
|||
|
month={10},
|
|||
|
year={2022},
|
|||
|
publisher={Springer Nature Switzerland},
|
|||
|
address={Cham},
|
|||
|
doi={10.1007/978-3-031-19815-1_11},
|
|||
|
url={https://doi.org/10.1007/978-3-031-19815-1_11}
|
|||
|
}
|
|||
|
```
|