PaddleOCR/tools/program.py

827 lines
28 KiB
Python
Raw Normal View History

2021-06-21 20:20:25 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2020-05-10 16:26:57 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-10-13 17:13:33 +08:00
import os
2020-05-10 16:26:57 +08:00
import sys
2021-04-27 10:32:17 +08:00
import platform
2020-05-10 16:26:57 +08:00
import yaml
import time
import datetime
2020-10-13 17:13:33 +08:00
import paddle
import paddle.distributed as dist
from tqdm import tqdm
import cv2
import numpy as np
2020-10-13 17:13:33 +08:00
from argparse import ArgumentParser, RawDescriptionHelpFormatter
2020-05-10 16:26:57 +08:00
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
from ppocr.utils.utility import print_dict, AverageMeter
2020-11-04 20:43:27 +08:00
from ppocr.utils.logging import get_logger
from ppocr.utils.loggers import WandbLogger, Loggers
2021-09-28 10:28:25 +08:00
from ppocr.utils import profiler
2020-11-04 20:43:27 +08:00
from ppocr.data import build_dataloader
2020-05-10 16:26:57 +08:00
2020-11-05 15:13:36 +08:00
2020-05-10 16:26:57 +08:00
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(formatter_class=RawDescriptionHelpFormatter)
2020-05-10 16:26:57 +08:00
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument("-o", "--opt", nargs="+", help="set configuration options")
2020-05-10 16:26:57 +08:00
self.add_argument(
"-p",
"--profiler_options",
2021-09-28 10:01:37 +08:00
type=str,
default=None,
help="The option of profiler, which should be in format "
'"key1=value1;key2=value2;key3=value3".',
2021-09-28 10:01:37 +08:00
)
2020-05-10 16:26:57 +08:00
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, "Please specify --config=configure_file_path."
2020-05-10 16:26:57 +08:00
args.opt = self._parse_opt(args.opt)
return args
def _parse_opt(self, opts):
config = {}
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split("=")
2020-05-10 16:26:57 +08:00
config[k] = yaml.load(v, Loader=yaml.Loader)
return config
def load_config(file_path):
"""
Load config from yml/yaml file.
Args:
file_path (str): Path of the config file to be loaded.
Returns: global config
"""
_, ext = os.path.splitext(file_path)
assert ext in [".yml", ".yaml"], "only support yaml files for now"
config = yaml.load(open(file_path, "rb"), Loader=yaml.Loader)
return config
2020-05-10 16:26:57 +08:00
def merge_config(config, opts):
2020-05-10 16:26:57 +08:00
"""
Merge config into global config.
Args:
config (dict): Config to be merged.
Returns: global config
"""
for key, value in opts.items():
2020-05-10 16:26:57 +08:00
if "." not in key:
if isinstance(value, dict) and key in config:
config[key].update(value)
2020-05-10 16:26:57 +08:00
else:
config[key] = value
2020-05-10 16:26:57 +08:00
else:
sub_keys = key.split(".")
assert sub_keys[0] in config, (
"the sub_keys can only be one of global_config: {}, but get: "
"{}, please check your running command".format(
config.keys(), sub_keys[0]
)
)
cur = config[sub_keys[0]]
2020-05-10 16:26:57 +08:00
for idx, sub_key in enumerate(sub_keys[1:]):
if idx == len(sub_keys) - 2:
cur[sub_key] = value
else:
cur = cur[sub_key]
return config
2020-05-10 16:26:57 +08:00
def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
2020-05-10 16:26:57 +08:00
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
err = (
"Config {} cannot be set as true while your paddle "
"is not compiled with {} ! \nPlease try: \n"
"\t1. Install paddlepaddle to run model on {} \n"
"\t2. Set {} as false in config file to run "
"model on CPU"
)
2020-05-10 16:26:57 +08:00
try:
if use_gpu and use_xpu:
2024-01-02 11:02:13 +08:00
print("use_xpu and use_gpu can not both be true.")
2020-12-21 17:13:32 +08:00
if use_gpu and not paddle.is_compiled_with_cuda():
print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
sys.exit(1)
if use_xpu and not paddle.device.is_compiled_with_xpu():
print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
2020-05-10 16:26:57 +08:00
sys.exit(1)
2023-04-11 09:56:08 +08:00
if use_npu:
if (
int(paddle.version.major) != 0
and int(paddle.version.major) <= 2
and int(paddle.version.minor) <= 4
):
2023-04-11 09:56:08 +08:00
if not paddle.device.is_compiled_with_npu():
print(err.format("use_npu", "npu", "npu", "use_npu"))
sys.exit(1)
# is_compiled_with_npu() has been updated after paddle-2.4
else:
if not paddle.device.is_compiled_with_custom_device("npu"):
print(err.format("use_npu", "npu", "npu", "use_npu"))
sys.exit(1)
if use_mlu and not paddle.device.is_compiled_with_mlu():
print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
sys.exit(1)
2022-02-23 16:31:16 +08:00
except Exception as e:
pass
2022-08-08 14:50:27 +08:00
2022-07-30 10:00:11 +08:00
def to_float32(preds):
if isinstance(preds, dict):
for k in preds:
if isinstance(preds[k], dict) or isinstance(preds[k], list):
preds[k] = to_float32(preds[k])
2022-08-19 13:26:02 +08:00
elif isinstance(preds[k], paddle.Tensor):
preds[k] = preds[k].astype(paddle.float32)
2022-07-30 10:00:11 +08:00
elif isinstance(preds, list):
for k in range(len(preds)):
if isinstance(preds[k], dict):
preds[k] = to_float32(preds[k])
elif isinstance(preds[k], list):
preds[k] = to_float32(preds[k])
2022-08-19 13:26:02 +08:00
elif isinstance(preds[k], paddle.Tensor):
preds[k] = preds[k].astype(paddle.float32)
elif isinstance(preds, paddle.Tensor):
preds = preds.astype(paddle.float32)
2022-07-30 10:00:11 +08:00
return preds
2022-02-23 16:31:16 +08:00
2022-08-08 14:50:27 +08:00
def train(
config,
train_dataloader,
valid_dataloader,
device,
model,
loss_class,
optimizer,
lr_scheduler,
post_process_class,
eval_class,
pre_best_model_dict,
logger,
step_pre_epoch,
log_writer=None,
scaler=None,
amp_level="O2",
amp_custom_black_list=[],
amp_custom_white_list=[],
amp_dtype="float16",
):
cal_metric_during_train = config["Global"].get("cal_metric_during_train", False)
calc_epoch_interval = config["Global"].get("calc_epoch_interval", 1)
log_smooth_window = config["Global"]["log_smooth_window"]
epoch_num = config["Global"]["epoch_num"]
print_batch_step = config["Global"]["print_batch_step"]
eval_batch_step = config["Global"]["eval_batch_step"]
eval_batch_epoch = config["Global"].get("eval_batch_epoch", None)
profiler_options = config["profiler_options"]
2020-10-13 17:13:33 +08:00
2020-11-04 20:43:27 +08:00
global_step = 0
if "global_step" in pre_best_model_dict:
global_step = pre_best_model_dict["global_step"]
2020-07-07 10:35:17 +08:00
start_eval_step = 0
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
2023-09-26 18:50:42 +08:00
start_eval_step = eval_batch_step[0] if not eval_batch_epoch else 0
eval_batch_step = (
eval_batch_step[1]
if not eval_batch_epoch
else step_pre_epoch * eval_batch_epoch
)
2021-02-04 11:33:48 +08:00
if len(valid_dataloader) == 0:
logger.info(
"No Images in eval dataset, evaluation during training "
"will be disabled"
2021-02-04 11:33:48 +08:00
)
start_eval_step = 1e111
2020-07-07 10:35:17 +08:00
logger.info(
"During the training process, after the {}th iteration, "
"an evaluation is run every {} iterations".format(
start_eval_step, eval_batch_step
)
)
save_epoch_step = config["Global"]["save_epoch_step"]
save_model_dir = config["Global"]["save_model_dir"]
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
2020-10-13 17:13:33 +08:00
main_indicator = eval_class.main_indicator
best_model_dict = {main_indicator: 0}
best_model_dict.update(pre_best_model_dict)
train_stats = TrainingStats(log_smooth_window, ["lr"])
2021-01-22 11:15:56 +08:00
model_average = False
2020-10-13 17:13:33 +08:00
model.train()
use_srn = config["Architecture"]["algorithm"] == "SRN"
extra_input_models = [
"SRN",
"NRTR",
"SAR",
"SEED",
"SVTR",
"SVTR_LCNet",
"SPIN",
"VisionLAN",
"RobustScanner",
"RFL",
"DRRG",
"SATRN",
"SVTR_HGNet",
"ParseQ",
"CPPD",
]
2022-04-27 13:19:55 +08:00
extra_input = False
if config["Architecture"]["algorithm"] == "Distillation":
for key in config["Architecture"]["Models"]:
extra_input = (
extra_input
or config["Architecture"]["Models"][key]["algorithm"]
in extra_input_models
)
else:
extra_input = config["Architecture"]["algorithm"] in extra_input_models
try:
model_type = config["Architecture"]["model_type"]
except:
2021-07-07 09:54:03 +08:00
model_type = None
algorithm = config["Architecture"]["algorithm"]
2021-02-07 15:31:24 +08:00
start_epoch = (
best_model_dict["start_epoch"] if "start_epoch" in best_model_dict else 1
)
total_samples = 0
train_reader_cost = 0.0
train_batch_cost = 0.0
reader_start = time.time()
eta_meter = AverageMeter()
max_iter = (
len(train_dataloader) - 1
if platform.system() == "Windows"
else len(train_dataloader)
)
2020-10-13 17:13:33 +08:00
2020-12-30 19:54:16 +08:00
for epoch in range(start_epoch, epoch_num + 1):
if train_dataloader.dataset.need_reset:
train_dataloader = build_dataloader(
config, "Train", device, logger, seed=epoch
)
max_iter = (
len(train_dataloader) - 1
if platform.system() == "Windows"
else len(train_dataloader)
)
2020-10-13 17:13:33 +08:00
for idx, batch in enumerate(train_dataloader):
2021-09-28 10:01:37 +08:00
profiler.add_profiler_step(profiler_options)
2021-10-27 20:16:36 +08:00
train_reader_cost += time.time() - reader_start
2021-04-29 12:37:05 +08:00
if idx >= max_iter:
2020-10-13 17:13:33 +08:00
break
lr = optimizer.get_lr()
images = batch[0]
2021-02-07 15:31:24 +08:00
if use_srn:
2021-01-22 11:15:56 +08:00
model_average = True
2021-10-15 16:30:51 +08:00
# use amp
if scaler:
with paddle.amp.auto_cast(
level=amp_level,
custom_black_list=amp_custom_black_list,
custom_white_list=amp_custom_white_list,
dtype=amp_dtype,
):
if model_type == "table" or extra_input:
2021-10-15 16:30:51 +08:00
preds = model(images, data=batch[1:])
elif model_type in ["kie"]:
2022-06-28 10:17:53 +08:00
preds = model(batch)
elif algorithm in ["CAN"]:
2022-10-15 20:27:05 +08:00
preds = model(batch[:3])
2021-10-15 16:30:51 +08:00
else:
preds = model(images)
2022-07-30 10:00:11 +08:00
preds = to_float32(preds)
loss = loss_class(preds, batch)
avg_loss = loss["loss"]
2022-07-30 10:00:11 +08:00
scaled_avg_loss = scaler.scale(avg_loss)
scaled_avg_loss.backward()
scaler.minimize(optimizer, scaled_avg_loss)
2020-12-30 16:15:49 +08:00
else:
if model_type == "table" or extra_input:
2021-10-15 16:30:51 +08:00
preds = model(images, data=batch[1:])
elif model_type in ["kie", "sr"]:
2021-12-18 16:04:10 +08:00
preds = model(batch)
elif algorithm in ["CAN"]:
2022-10-15 20:27:05 +08:00
preds = model(batch[:3])
2021-10-15 16:30:51 +08:00
else:
preds = model(images)
2022-07-30 10:00:11 +08:00
loss = loss_class(preds, batch)
avg_loss = loss["loss"]
2021-10-15 16:30:51 +08:00
avg_loss.backward()
optimizer.step()
2020-10-13 17:13:33 +08:00
optimizer.clear_grad()
2020-11-16 19:00:27 +08:00
if (
cal_metric_during_train and epoch % calc_epoch_interval == 0
): # only rec and cls need
batch = [item.numpy() for item in batch]
if model_type in ["kie", "sr"]:
eval_class(preds, batch)
elif model_type in ["table"]:
2022-06-16 21:24:38 +08:00
post_result = post_process_class(preds, batch)
eval_class(post_result, batch)
elif algorithm in ["CAN"]:
model_type = "can"
2022-10-15 20:27:05 +08:00
eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
else:
if config["Loss"]["name"] in [
"MultiLoss",
"MultiLoss_v2",
]: # for multi head loss
post_result = post_process_class(
preds["ctc"], batch[1]
) # for CTC head out
elif config["Loss"]["name"] in ["VLLoss"]:
post_result = post_process_class(preds, batch[1], batch[-1])
else:
post_result = post_process_class(preds, batch[1])
eval_class(post_result, batch)
metric = eval_class.get_metric()
train_stats.update(metric)
train_batch_time = time.time() - reader_start
train_batch_cost += train_batch_time
eta_meter.update(train_batch_time)
global_step += 1
2021-10-27 20:16:36 +08:00
total_samples += len(images)
2020-11-16 19:00:27 +08:00
2020-11-04 20:43:27 +08:00
if not isinstance(lr_scheduler, float):
lr_scheduler.step()
2020-10-13 17:13:33 +08:00
# logger and visualdl
2023-07-31 15:13:11 +08:00
stats = {
k: float(v) if v.shape == [] else v.numpy().mean()
for k, v in loss.items()
}
stats["lr"] = lr
2020-10-13 17:13:33 +08:00
train_stats.update(stats)
if log_writer is not None and dist.get_rank() == 0:
2022-06-16 21:24:38 +08:00
log_writer.log_metrics(
metrics=train_stats.get(), prefix="TRAIN", step=global_step
)
2020-10-13 17:13:33 +08:00
2021-03-24 14:32:38 +08:00
if dist.get_rank() == 0 and (
(global_step > 0 and global_step % print_batch_step == 0)
or (idx >= len(train_dataloader) - 1)
):
2020-10-13 17:13:33 +08:00
logs = train_stats.log()
2022-02-07 15:02:04 +08:00
eta_sec = (
(epoch_num + 1 - epoch) * len(train_dataloader) - idx - 1
) * eta_meter.avg
eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
2023-11-24 16:50:34 +08:00
max_mem_reserved_str = ""
max_mem_allocated_str = ""
2023-11-23 16:58:48 +08:00
if paddle.device.is_compiled_with_cuda():
max_mem_reserved_str = f"max_mem_reserved: {paddle.device.cuda.max_memory_reserved() // (1024 ** 2)} MB,"
max_mem_allocated_str = f"max_mem_allocated: {paddle.device.cuda.max_memory_allocated() // (1024 ** 2)} MB"
strs = (
"epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: "
"{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, "
"ips: {:.5f} samples/s, eta: {}, {} {}".format(
epoch,
epoch_num,
global_step,
logs,
train_reader_cost / print_batch_step,
train_batch_cost / print_batch_step,
total_samples / print_batch_step,
total_samples / train_batch_cost,
eta_sec_format,
max_mem_reserved_str,
max_mem_allocated_str,
)
)
2020-10-13 17:13:33 +08:00
logger.info(strs)
2021-10-27 20:16:36 +08:00
total_samples = 0
train_reader_cost = 0.0
train_batch_cost = 0.0
2020-10-13 17:13:33 +08:00
# eval
if (
global_step > start_eval_step
and (global_step - start_eval_step) % eval_batch_step == 0
and dist.get_rank() == 0
):
2021-01-22 11:15:56 +08:00
if model_average:
Model_Average = paddle.incubate.optimizer.ModelAverage(
0.15,
parameters=model.parameters(),
min_average_window=10000,
max_average_window=15625,
)
2021-01-22 11:15:56 +08:00
Model_Average.apply()
2021-02-07 15:31:24 +08:00
cur_metric = eval(
model,
valid_dataloader,
post_process_class,
eval_class,
2021-06-21 20:33:19 +08:00
model_type,
2022-08-08 19:31:12 +08:00
extra_input=extra_input,
2022-08-22 19:32:37 +08:00
scaler=scaler,
amp_level=amp_level,
2023-06-08 15:50:37 +08:00
amp_custom_black_list=amp_custom_black_list,
amp_custom_white_list=amp_custom_white_list,
amp_dtype=amp_dtype,
)
cur_metric_str = "cur metric, {}".format(
", ".join(["{}: {}".format(k, v) for k, v in cur_metric.items()])
)
2021-01-26 15:16:02 +08:00
logger.info(cur_metric_str)
2020-10-13 17:13:33 +08:00
# logger metric
if log_writer is not None:
2022-06-16 21:24:38 +08:00
log_writer.log_metrics(
metrics=cur_metric, prefix="EVAL", step=global_step
)
if cur_metric[main_indicator] >= best_model_dict[main_indicator]:
2021-01-26 15:16:02 +08:00
best_model_dict.update(cur_metric)
best_model_dict["best_epoch"] = epoch
2020-10-13 17:13:33 +08:00
save_model(
model,
optimizer,
save_model_dir,
logger,
config,
2020-10-13 17:13:33 +08:00
is_best=True,
prefix="best_accuracy",
2020-10-13 17:13:33 +08:00
best_model_dict=best_model_dict,
epoch=epoch,
global_step=global_step,
)
best_str = "best metric, {}".format(
", ".join(
["{}: {}".format(k, v) for k, v in best_model_dict.items()]
)
)
2020-10-13 17:13:33 +08:00
logger.info(best_str)
# logger best metric
if log_writer is not None:
2022-06-16 21:24:38 +08:00
log_writer.log_metrics(
metrics={
"best_{}".format(main_indicator): best_model_dict[
main_indicator
]
2022-06-16 21:24:38 +08:00
},
prefix="EVAL",
step=global_step,
)
2022-06-16 21:24:38 +08:00
log_writer.log_model(
is_best=True, prefix="best_accuracy", metadata=best_model_dict
)
2021-10-27 20:16:36 +08:00
reader_start = time.time()
2020-10-13 17:13:33 +08:00
if dist.get_rank() == 0:
save_model(
model,
optimizer,
save_model_dir,
logger,
config,
2020-10-13 17:13:33 +08:00
is_best=False,
prefix="latest",
2020-10-13 17:13:33 +08:00
best_model_dict=best_model_dict,
epoch=epoch,
global_step=global_step,
)
if log_writer is not None:
log_writer.log_model(is_best=False, prefix="latest")
2020-10-13 17:13:33 +08:00
if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
save_model(
model,
optimizer,
save_model_dir,
logger,
config,
2020-10-13 17:13:33 +08:00
is_best=False,
prefix="iter_epoch_{}".format(epoch),
2020-10-13 17:13:33 +08:00
best_model_dict=best_model_dict,
epoch=epoch,
global_step=global_step,
)
if log_writer is not None:
2022-06-16 21:24:38 +08:00
log_writer.log_model(
is_best=False, prefix="iter_epoch_{}".format(epoch)
)
best_str = "best metric, {}".format(
", ".join(["{}: {}".format(k, v) for k, v in best_model_dict.items()])
)
2020-10-13 17:13:33 +08:00
logger.info(best_str)
if dist.get_rank() == 0 and log_writer is not None:
log_writer.close()
2020-05-10 16:26:57 +08:00
return
def eval(
model,
valid_dataloader,
post_process_class,
eval_class,
model_type=None,
extra_input=False,
scaler=None,
amp_level="O2",
amp_custom_black_list=[],
amp_custom_white_list=[],
amp_dtype="float16",
):
2020-10-13 17:13:33 +08:00
model.eval()
with paddle.no_grad():
total_frame = 0.0
total_time = 0.0
2021-10-27 20:16:36 +08:00
pbar = tqdm(
total=len(valid_dataloader), desc="eval model:", position=0, leave=True
)
max_iter = (
len(valid_dataloader) - 1
if platform.system() == "Windows"
else len(valid_dataloader)
)
sum_images = 0
2020-10-13 17:13:33 +08:00
for idx, batch in enumerate(valid_dataloader):
2021-04-27 10:32:17 +08:00
if idx >= max_iter:
2020-10-13 17:13:33 +08:00
break
2020-11-06 18:56:53 +08:00
images = batch[0]
2020-10-13 17:13:33 +08:00
start = time.time()
2022-08-08 19:31:12 +08:00
# use amp
if scaler:
with paddle.amp.auto_cast(
level=amp_level,
custom_black_list=amp_custom_black_list,
dtype=amp_dtype,
):
if model_type == "table" or extra_input:
2022-08-08 19:31:12 +08:00
preds = model(images, data=batch[1:])
elif model_type in ["kie"]:
2022-08-08 19:31:12 +08:00
preds = model(batch)
elif model_type in ["can"]:
2022-10-15 20:27:05 +08:00
preds = model(batch[:3])
elif model_type in ["sr"]:
preds = model(batch)
sr_img = preds["sr_img"]
lr_img = preds["lr_img"]
2022-08-08 19:31:12 +08:00
else:
preds = model(images)
2022-08-19 13:26:02 +08:00
preds = to_float32(preds)
else:
if model_type == "table" or extra_input:
2022-08-08 19:31:12 +08:00
preds = model(images, data=batch[1:])
elif model_type in ["kie"]:
2022-08-08 19:31:12 +08:00
preds = model(batch)
elif model_type in ["can"]:
2022-10-15 20:27:05 +08:00
preds = model(batch[:3])
elif model_type in ["sr"]:
preds = model(batch)
sr_img = preds["sr_img"]
lr_img = preds["lr_img"]
2022-08-08 19:31:12 +08:00
else:
preds = model(images)
batch_numpy = []
for item in batch:
if isinstance(item, paddle.Tensor):
batch_numpy.append(item.numpy())
else:
batch_numpy.append(item)
2020-10-13 17:13:33 +08:00
# Obtain usable results from post-processing methods
total_time += time.time() - start
# Evaluate the results of the current batch
if model_type in ["table", "kie"]:
if post_process_class is None:
eval_class(preds, batch_numpy)
else:
post_result = post_process_class(preds, batch_numpy)
eval_class(post_result, batch_numpy)
elif model_type in ["sr"]:
eval_class(preds, batch_numpy)
elif model_type in ["can"]:
eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
2021-06-16 16:47:33 +08:00
else:
post_result = post_process_class(preds, batch_numpy[1])
eval_class(post_result, batch_numpy)
2021-10-09 17:53:22 +08:00
2020-11-06 18:56:53 +08:00
pbar.update(1)
2020-10-13 17:13:33 +08:00
total_frame += len(images)
sum_images += 1
2021-01-26 15:16:02 +08:00
# Get final metriceg. acc or hmean
metric = eval_class.get_metric()
2020-11-05 15:13:36 +08:00
2020-11-06 18:56:53 +08:00
pbar.close()
2020-10-13 17:13:33 +08:00
model.train()
metric["fps"] = total_frame / total_time
2021-01-26 15:16:02 +08:00
return metric
2020-08-15 21:54:59 +08:00
2020-08-15 12:39:07 +08:00
def update_center(char_center, post_result, preds):
result, label = post_result
feats, logits = preds
logits = paddle.argmax(logits, axis=-1)
feats = feats.numpy()
logits = logits.numpy()
for idx_sample in range(len(label)):
if result[idx_sample][0] == label[idx_sample][0]:
feat = feats[idx_sample]
logit = logits[idx_sample]
for idx_time in range(len(logit)):
index = logit[idx_time]
if index in char_center.keys():
char_center[index][0] = (
char_center[index][0] * char_center[index][1] + feat[idx_time]
) / (char_center[index][1] + 1)
char_center[index][1] += 1
else:
char_center[index] = [feat[idx_time], 1]
return char_center
def get_center(model, eval_dataloader, post_process_class):
pbar = tqdm(total=len(eval_dataloader), desc="get center:")
max_iter = (
len(eval_dataloader) - 1
if platform.system() == "Windows"
else len(eval_dataloader)
)
char_center = dict()
for idx, batch in enumerate(eval_dataloader):
if idx >= max_iter:
break
images = batch[0]
start = time.time()
preds = model(images)
batch = [item.numpy() for item in batch]
# Obtain usable results from post-processing methods
post_result = post_process_class(preds, batch[1])
# update char_center
char_center = update_center(char_center, post_result, preds)
pbar.update(1)
pbar.close()
for key in char_center.keys():
char_center[key] = char_center[key][0]
return char_center
def preprocess(is_train=False):
2020-08-15 21:54:59 +08:00
FLAGS = ArgsParser().parse_args()
2021-09-28 10:01:37 +08:00
profiler_options = FLAGS.profiler_options
2020-08-15 21:54:59 +08:00
config = load_config(FLAGS.config)
config = merge_config(config, FLAGS.opt)
2021-09-29 09:59:43 +08:00
profile_dic = {"profiler_options": FLAGS.profiler_options}
config = merge_config(config, profile_dic)
2020-08-15 21:54:59 +08:00
2021-09-27 19:43:36 +08:00
if is_train:
# save_config
save_model_dir = config["Global"]["save_model_dir"]
2021-09-27 19:43:36 +08:00
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, "config.yml"), "w") as f:
yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)
log_file = "{}/train.log".format(save_model_dir)
2021-09-27 19:43:36 +08:00
else:
log_file = None
2022-03-22 12:48:50 +08:00
logger = get_logger(log_file=log_file)
2020-08-15 21:54:59 +08:00
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config["Global"].get("use_gpu", False)
use_xpu = config["Global"].get("use_xpu", False)
use_npu = config["Global"].get("use_npu", False)
use_mlu = config["Global"].get("use_mlu", False)
2022-02-23 16:31:16 +08:00
alg = config["Architecture"]["algorithm"]
2020-10-13 17:13:33 +08:00
assert alg in [
"EAST",
"DB",
"SAST",
"Rosetta",
"CRNN",
"STARNet",
"RARE",
"SRN",
"CLS",
"PGNet",
"Distillation",
"NRTR",
"TableAttn",
"SAR",
"PSE",
"SEED",
"SDMGR",
"LayoutXLM",
"LayoutLM",
"LayoutLMv2",
"PREN",
"FCE",
"SVTR",
"SVTR_LCNet",
"ViTSTR",
"ABINet",
"DB++",
"TableMaster",
"SPIN",
"VisionLAN",
"Gestalt",
"SLANet",
"RobustScanner",
"CT",
"RFL",
"DRRG",
"CAN",
"Telescope",
"SATRN",
"SVTR_HGNet",
"ParseQ",
"CPPD",
2020-10-13 17:13:33 +08:00
]
2020-08-15 21:54:59 +08:00
2022-02-23 16:31:16 +08:00
if use_xpu:
device = "xpu:{0}".format(os.getenv("FLAGS_selected_xpus", 0))
elif use_npu:
device = "npu:{0}".format(os.getenv("FLAGS_selected_npus", 0))
elif use_mlu:
device = "mlu:{0}".format(os.getenv("FLAGS_selected_mlus", 0))
else:
device = "gpu:{}".format(dist.ParallelEnv().dev_id) if use_gpu else "cpu"
check_device(use_gpu, use_xpu, use_npu, use_mlu)
2020-10-13 17:13:33 +08:00
device = paddle.set_device(device)
2020-11-05 15:13:36 +08:00
config["Global"]["distributed"] = dist.get_world_size() != 1
2021-09-27 19:43:36 +08:00
loggers = []
if "use_visualdl" in config["Global"] and config["Global"]["use_visualdl"]:
logger.warning(
"You are using VisualDL, the VisualDL is deprecated and "
"removed in ppocr!"
)
log_writer = None
if (
"use_wandb" in config["Global"] and config["Global"]["use_wandb"]
) or "wandb" in config:
save_dir = config["Global"]["save_model_dir"]
wandb_writer_path = "{}/wandb".format(save_dir)
if "wandb" in config:
wandb_params = config["wandb"]
else:
wandb_params = dict()
wandb_params.update({"save_dir": save_dir})
log_writer = WandbLogger(**wandb_params, config=config)
loggers.append(log_writer)
2020-11-04 20:43:27 +08:00
else:
log_writer = None
2020-11-04 20:43:27 +08:00
print_dict(config, logger)
if loggers:
log_writer = Loggers(loggers)
else:
log_writer = None
logger.info("train with paddle {} and device {}".format(paddle.__version__, device))
return config, device, logger, log_writer