PaddleOCR/README.md

94 lines
10 KiB
Markdown
Raw Normal View History

[English](README_en.md) | 简体中文
2020-10-13 17:49:16 +08:00
2021-09-03 22:13:08 +08:00
<p align="center">
<img src="https://github.com/PaddlePaddle/PaddleOCR/releases/download/v2.8.0/PaddleOCR_logo.png" align="middle" width = "600"/>
2021-09-03 22:13:08 +08:00
<p align="center">
<p align="center">
<a href="https://discord.gg/z9xaRVjdbD"><img src="https://img.shields.io/badge/Chat-on%20discord-7289da.svg?sanitize=true" alt="Chat"></a>
2021-09-03 22:13:08 +08:00
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
<a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>
## 简介
2020-10-13 17:49:16 +08:00
PaddleOCR 旨在打造一套丰富、领先、且实用的 OCR 工具库,助力开发者训练出更好的模型,并应用落地。
2022-05-09 00:04:06 +08:00
<div align="center">
<img src="https://github.com/PaddlePaddle/PaddleOCR/releases/download/v2.8.0/demo.gif" width="800">
2022-05-09 00:04:06 +08:00
</div>
2020-12-16 00:44:40 +08:00
## 🚀 社区
PaddleOCR 由 [PMC](https://github.com/PaddlePaddle/PaddleOCR/issues/12122) 监督。Issues 和 PRs 将在尽力的基础上进行审查。欲了解 PaddlePaddle 社区的完整概况,请访问 [community](https://github.com/PaddlePaddle/community)。
⚠️注意:[Issues](https://github.com/PaddlePaddle/PaddleOCR/issues)模块仅用来报告程序🐞Bug其余提问请移步[Discussions](https://github.com/PaddlePaddle/PaddleOCR/discussions)模块提问。如所提Issue不是Bug会被移到Discussions模块敬请谅解。
2024-10-10 19:48:04 +08:00
## 📣 近期更新([more](https://paddlepaddle.github.io/PaddleOCR/latest/update.html))
- **🔥🔥2025.3.7 PaddleOCR 2.10 版本,主要包含如下内容**
- **重磅新增 OCR 领域 12 个自研单模型:**
- **[版面区域检测](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/layout_detection.html)** 系列 3 个模型PP-DocLayout-L、PP-DocLayout-M、PP-DocLayout-S支持预测 23 个常见版面类别,中英论文、研报、试卷、书籍、杂志、合同、报纸等丰富类型的文档实现高质量版面检测,**mAP@0.5 最高达 90.4%,轻量模型端到端每秒处理超百页文档图像。**
- **[公式识别](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/formula_recognition.html)** 系列 2 个模型PP-FormulaNet-L、PP-FormulaNet-S支持 5 万种 LaTeX 常见词汇,支持识别高难度印刷公式和手写公式,其中 **PP-FormulaNet-L 较开源同等量级模型精度高 6 个百分点PP-FormulaNet-S 较同等精度模型速度快 16 倍。**
- **[表格结构识别](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/table_structure_recognition.html)** 系列 2 个模型SLANeXt_wired、SLANeXt_wireless。飞桨自研新一代表格结构识别模型分别支持有线表格和无线表格的结构预测。相比于SLANet_plusSLANeXt在表格结构方面有较大提升**在内部高难度表格识别评测集上精度高 6 个百分点。**
- **[表格分类](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/table_classification.html)** 系列 1 个模型PP-LCNet_x1_0_table_cls超轻量级有线表格和无线表格的分类模型。
- **[表格单元格检测](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/table_cells_detection.html)** 系列 2 个模型RT-DETR-L_wired_table_cell_det、RT-DETR-L_wireless_table_cell_det分别支持有线表格和无线表格的单元格检测可配合SLANeXt_wired、SLANeXt_wireless、文本检测、文本识别模块完成对表格的端到端预测。参见本次新增的表格识别v2产线
- **[文本识别](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html)** 系列 1 个模型: PP-OCRv4_server_rec_doc**支持1.5万+字典,文字识别范围更广,与此同时提升了部分文字的识别精准度,在内部数据集上,精度较 PP-OCRv4_server_rec 高 3 个百分点以上。**
- **[文本行方向分类](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html)** 系列 1 个模型PP-LCNet_x0_25_textline_ori**存储只有 0.3M** 的超轻量级文本行方向分类模型。
- **重磅推出 4 条高价值多模型组合方案:**
- **[文档图像预处理产线](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/ocr_pipelines/doc_preprocessor.html)**:通过超轻量级模型组合使用,实现对文档图像的扭曲和方向的矫正。
- **[版面解析v2产线](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/ocr_pipelines/layout_parsing_v2.html)**:组合多个自研的不同类型的 OCR 类模型,优化复杂版面阅读顺序,实现多种复杂 PDF 文件端到端转换 Markdown 文件和 JSON 文件。在多个文档场景下,转换效果较其他开源方案更好。可以为大模型训练和应用提供高质量的数据生产能力。
- **[表格识别v2产线](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/ocr_pipelines/table_recognition_v2.html)****提供更好的表格端到端识别能力。** 通过将表格分类模块、表格单元格检测模块、表格结构识别模块、文本检测模块、文本识别模块等组合使用,实现对多种样式的表格预测,用户可自定义微调其中任意模块以提升垂类表格的效果。
- **[PP-ChatOCRv4-doc产线](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction_v4.html)**:在 PP-ChatOCRv3-doc 的基础上,**融合了多模态大模型,优化了 Prompt 和多模型组合后处理逻辑,更好地解决了版面分析、生僻字、多页 pdf、表格、印章识别等常见的复杂文档信息抽取难点问题准确率较 PP-ChatOCRv3-doc 高 15 个百分点。其中,大模型升级了本地部署的能力,提供了标准的 OpenAI 调用接口,支持对本地大模型如 DeepSeek-R1 部署的调用。**
- **🔥2024.10.1 添加OCR领域低代码全流程开发能力**:
- 飞桨低代码开发工具PaddleX依托于PaddleOCR的先进技术支持了OCR领域的低代码全流程开发能力
- 🎨 [**模型丰富一键调用**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/quick_start.html)将文本图像智能分析、通用OCR、通用版面解析、通用表格识别、公式识别、印章文本识别涉及的**17个模型**整合为6条模型产线通过极简的**Python API一键调用**快速体验模型效果。此外同一套API也支持图像分类、目标检测、图像分割、时序预测等共计**200+模型**形成20+单功能模块,方便开发者进行**模型组合**使用。
- 🚀[**提高效率降低门槛**](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/overview.html):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能推理、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。
2024-11-21 21:07:20 +08:00
- 支持文档场景信息抽取v3[PP-ChatOCRv3-doc](https://paddlepaddle.github.io/PaddleX/latest/pipeline_usage/tutorials/information_extraction_pipelines/document_scene_information_extraction.html)、基于RT-DETR的[高精度版面区域检测模型](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/layout_detection.html)和PicoDet的[高效率版面区域检测模型](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/layout_detection.html)、高精度表格结构识别模型[SLANet_Plus](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/table_structure_recognition.html)、文本图像矫正模型[UVDoc](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_image_unwarping.html)、公式识别模型[LatexOCR](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/formula_recognition.html)、基于PP-LCNet的[文档图像方向分类模型](https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/doc_img_orientation_classification.html)
- **🔥2024.7 添加 PaddleOCR 算法模型挑战赛冠军方案**
2024-10-10 19:48:04 +08:00
- 赛题一OCR 端到端识别任务冠军方案——[场景文本识别算法-SVTRv2](https://paddlepaddle.github.io/PaddleOCR/latest/algorithm/text_recognition/algorithm_rec_svtrv2.html)
- 赛题二:通用表格识别任务冠军方案——[表格识别算法-SLANet-LCNetV2](https://paddlepaddle.github.io/PaddleOCR/latest/algorithm/table_recognition/algorithm_table_slanet.html)。
## 🌟 特性
2024-10-23 11:44:12 +08:00
支持多种 OCR 相关前沿算法在此基础上打造产业级特色模型PP-OCR、PP-Structure和PP-ChatOCR并打通数据生产、模型训练、压缩、预测部署全流程。
2020-07-20 20:26:02 +08:00
2022-08-23 21:59:03 +08:00
<div align="center">
<img src="./docs/images/ppocrv4.png">
2022-08-23 21:59:03 +08:00
</div>
2020-12-15 15:09:24 +08:00
## ⚡ [快速开始](https://paddlepaddle.github.io/PaddleOCR/latest/quick_start.html)
2022-04-21 17:49:14 +08:00
## 🔥 [低代码全流程开发](https://paddlepaddle.github.io/PaddleOCR/latest/paddlex/overview.html)
## 📝 文档
2024-10-10 19:48:04 +08:00
完整文档请移步:[docs](https://paddlepaddle.github.io/PaddleOCR/latest/)
## 📚《动手学 OCR》电子书
2024-10-10 19:48:04 +08:00
- [《动手学 OCR》电子书](https://paddlepaddle.github.io/PaddleOCR/latest/ppocr/blog/ocr_book.html)
2022-08-23 15:24:14 +08:00
## 🎖 贡献者
2022-05-09 00:07:23 +08:00
<a href="https://github.com/PaddlePaddle/PaddleOCR/graphs/contributors">
<img src="https://contrib.rocks/image?repo=PaddlePaddle/PaddleOCR&max=400&columns=20" width="800"/>
</a>
2022-08-23 15:24:14 +08:00
## ⭐️ Star
2022-08-23 15:24:14 +08:00
[![Star History Chart](https://api.star-history.com/svg?repos=PaddlePaddle/PaddleOCR&type=Date)](https://star-history.com/#PaddlePaddle/PaddleOCR&Date)
2020-06-23 17:39:50 +08:00
## 许可证书
本项目的发布受 [Apache License Version 2.0](./LICENSE) 许可认证。