The above PSE model is trained using the ICDAR2015 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
<aname="4"></a>
## 4. Inference and Deployment
<aname="4-1"></a>
### 4.1 Python Inference
First, convert the model saved in the PSE text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)), you can use the following command to convert:
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese or curved text images.