119 lines
4.6 KiB
Python
119 lines
4.6 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
# @Time : 3/29/19 11:03 AM
|
||
|
# @Author : zhoujun
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from paddle.nn import functional as F
|
||
|
import numpy as np
|
||
|
from ppocr.utils.iou import iou
|
||
|
|
||
|
|
||
|
class PSELoss(nn.Layer):
|
||
|
def __init__(self, alpha, ohem_ratio=3, kernel_sample_mask='pred', reduction='sum', **kwargs):
|
||
|
"""Implement PSE Loss.
|
||
|
"""
|
||
|
super(PSELoss, self).__init__()
|
||
|
assert reduction in ['sum', 'mean', 'none']
|
||
|
self.alpha = alpha
|
||
|
self.ohem_ratio = ohem_ratio
|
||
|
self.kernel_sample_mask = kernel_sample_mask
|
||
|
self.reduction = reduction
|
||
|
|
||
|
def forward(self, outputs, labels):
|
||
|
predicts = outputs['maps']
|
||
|
predicts = F.interpolate(predicts, scale_factor=4)
|
||
|
|
||
|
texts = predicts[:, 0, :, :]
|
||
|
kernels = predicts[:, 1:, :, :]
|
||
|
gt_texts, gt_kernels, training_masks = labels[1:]
|
||
|
|
||
|
# text loss
|
||
|
selected_masks = self.ohem_batch(texts, gt_texts, training_masks)
|
||
|
|
||
|
loss_text = self.dice_loss(texts, gt_texts, selected_masks)
|
||
|
iou_text = iou((texts > 0).astype('int64'), gt_texts, training_masks, reduce=False)
|
||
|
losses = dict(
|
||
|
loss_text=loss_text,
|
||
|
iou_text=iou_text
|
||
|
)
|
||
|
|
||
|
# kernel loss
|
||
|
loss_kernels = []
|
||
|
if self.kernel_sample_mask == 'gt':
|
||
|
selected_masks = gt_texts * training_masks
|
||
|
elif self.kernel_sample_mask == 'pred':
|
||
|
selected_masks = (F.sigmoid(texts) > 0.5).astype('float32') * training_masks
|
||
|
|
||
|
for i in range(kernels.shape[1]):
|
||
|
kernel_i = kernels[:, i, :, :]
|
||
|
gt_kernel_i = gt_kernels[:, i, :, :]
|
||
|
loss_kernel_i = self.dice_loss(kernel_i, gt_kernel_i, selected_masks)
|
||
|
loss_kernels.append(loss_kernel_i)
|
||
|
loss_kernels = paddle.mean(paddle.stack(loss_kernels, axis=1), axis=1)
|
||
|
iou_kernel = iou(
|
||
|
(kernels[:, -1, :, :] > 0).astype('int64'), gt_kernels[:, -1, :, :], training_masks * gt_texts,
|
||
|
reduce=False)
|
||
|
losses.update(dict(
|
||
|
loss_kernels=loss_kernels,
|
||
|
iou_kernel=iou_kernel
|
||
|
))
|
||
|
loss = self.alpha * loss_text + (1 - self.alpha) * loss_kernels
|
||
|
losses['loss'] = loss
|
||
|
if self.reduction == 'sum':
|
||
|
losses = {x: paddle.sum(v) for x, v in losses.items()}
|
||
|
elif self.reduction == 'mean':
|
||
|
losses = {x: paddle.mean(v) for x, v in losses.items()}
|
||
|
return losses
|
||
|
|
||
|
def dice_loss(self, input, target, mask):
|
||
|
input = F.sigmoid(input)
|
||
|
|
||
|
input = input.reshape([input.shape[0], -1])
|
||
|
target = target.reshape([target.shape[0], -1])
|
||
|
mask = mask.reshape([mask.shape[0], -1])
|
||
|
|
||
|
input = input * mask
|
||
|
target = target * mask
|
||
|
|
||
|
a = paddle.sum(input * target, 1)
|
||
|
b = paddle.sum(input * input, 1) + 0.001
|
||
|
c = paddle.sum(target * target, 1) + 0.001
|
||
|
d = (2 * a) / (b + c)
|
||
|
return 1 - d
|
||
|
|
||
|
def ohem_single(self, score, gt_text, training_mask, ohem_ratio=3):
|
||
|
pos_num = int(paddle.sum((gt_text > 0.5).astype('float32'))) - int(
|
||
|
paddle.sum(paddle.logical_and((gt_text > 0.5), (training_mask <= 0.5)).astype('float32')))
|
||
|
|
||
|
if pos_num == 0:
|
||
|
# selected_mask = gt_text.copy() * 0 # may be not good
|
||
|
selected_mask = training_mask
|
||
|
selected_mask = selected_mask.reshape([1, selected_mask.shape[0], selected_mask.shape[1]]).astype(
|
||
|
'float32')
|
||
|
return selected_mask
|
||
|
|
||
|
neg_num = int(paddle.sum((gt_text <= 0.5).astype('float32')))
|
||
|
neg_num = int(min(pos_num * ohem_ratio, neg_num))
|
||
|
|
||
|
if neg_num == 0:
|
||
|
selected_mask = training_mask
|
||
|
selected_mask = selected_mask.view(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
|
||
|
return selected_mask
|
||
|
|
||
|
neg_score = paddle.masked_select(score, gt_text <= 0.5)
|
||
|
neg_score_sorted = paddle.sort(-neg_score)
|
||
|
threshold = -neg_score_sorted[neg_num - 1]
|
||
|
|
||
|
selected_mask = paddle.logical_and(paddle.logical_or((score >= threshold), (gt_text > 0.5)),
|
||
|
(training_mask > 0.5))
|
||
|
selected_mask = selected_mask.reshape([1, selected_mask.shape[0], selected_mask.shape[1]]).astype('float32')
|
||
|
return selected_mask
|
||
|
|
||
|
def ohem_batch(self, scores, gt_texts, training_masks, ohem_ratio=3):
|
||
|
selected_masks = []
|
||
|
for i in range(scores.shape[0]):
|
||
|
selected_masks.append(
|
||
|
self.ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[i, :, :], ohem_ratio))
|
||
|
|
||
|
selected_masks = paddle.concat(selected_masks, 0).astype('float32')
|
||
|
return selected_masks
|