2023-09-07 16:36:47 +08:00
# PasreQ
- [1. Introduction ](#1 )
- [2. Environment ](#2 )
- [3. Model Training / Evaluation / Prediction ](#3 )
- [3.1 Training ](#3-1 )
- [3.2 Evaluation ](#3-2 )
- [3.3 Prediction ](#3-3 )
- [4. Inference and Deployment ](#4 )
- [4.1 Python Inference ](#4-1 )
- [4.2 C++ Inference ](#4-2 )
- [4.3 Serving ](#4-3 )
- [4.4 More ](#4-4 )
- [5. FAQ ](#5 )
< a name = "1" > < / a >
## 1. Introduction
Paper:
> [Scene Text Recognition with Permuted Autoregressive Sequence Models](https://arxiv.org/abs/2207.06966)
> Darwin Bautista, Rowel Atienza
> ECCV, 2021
2024-04-21 21:46:20 +08:00
Using real datasets (real) and synthetic datsets (synth) for training respectively, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets.
2023-09-07 16:36:47 +08:00
- The real datasets include COCO-Text, RCTW17, Uber-Text, ArT, LSVT, MLT19, ReCTS, TextOCR and OpenVINO datasets.
- The synthesis datasets include MJSynth and SynthText datasets.
the algorithm reproduction effect is as follows:
|Training Dataset|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- | --- |
|Synth|ParseQ|VIT|[rec_vit_parseq.yml](../../configs/rec/rec_vit_parseq.yml)|91.24%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_synth.tgz)|
|Real|ParseQ|VIT|[rec_vit_parseq.yml](../../configs/rec/rec_vit_parseq.yml)|94.74%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz)|
|||||||
< a name = "2" > < / a >
## 2. Environment
Please refer to ["Environment Preparation" ](./environment_en.md ) to configure the PaddleOCR environment, and refer to ["Project Clone" ](./clone_en.md ) to clone the project code.
< a name = "3" > < / a >
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial ](./recognition_en.md ). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file** .
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_vit_parseq.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_vit_parseq.yml
```
Evaluation:
```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
Prediction:
```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
< a name = "4" > < / a >
## 4. Inference and Deployment
< a name = "4-1" > < / a >
### 4.1 Python Inference
First, the model saved during the SAR text recognition training process is converted into an inference model. ( [Model download link ](https://paddleocr.bj.bcebos.com/dygraph_v2.1/parseq/rec_vit_parseq_real.tgz ) ), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_vit_parseq.yml -o Global.pretrained_model=./rec_vit_parseq_real/best_accuracy Global.save_inference_dir=./inference/rec_parseq
```
For SAR text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_parseq/" --rec_image_shape="3, 32, 128" --rec_algorithm="ParseQ" --rec_char_dict_path="ppocr/utils/dict/parseq_dict.txt" --max_text_length=25 --use_space_char=False
```
< a name = "4-2" > < / a >
### 4.2 C++ Inference
Not supported
< a name = "4-3" > < / a >
### 4.3 Serving
Not supported
< a name = "4-4" > < / a >
### 4.4 More
Not supported
< a name = "5" > < / a >
## 5. FAQ
## Citation
```bibtex
@InProceedings {bautista2022parseq,
title={Scene Text Recognition with Permuted Autoregressive Sequence Models},
author={Bautista, Darwin and Atienza, Rowel},
booktitle={European Conference on Computer Vision},
pages={178--196},
month={10},
year={2022},
publisher={Springer Nature Switzerland},
address={Cham},
doi={10.1007/978-3-031-19815-1_11},
url={https://doi.org/10.1007/978-3-031-19815-1_11}
}
```