2022-08-12 10:49:54 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from PIL import Image
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
sys.path.insert(0, __dir__)
|
|
|
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
import time
|
|
|
|
import traceback
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
import tools.infer.utility as utility
|
|
|
|
from ppocr.postprocess import build_post_process
|
|
|
|
from ppocr.utils.logging import get_logger
|
2022-08-21 10:55:49 +08:00
|
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read
|
2022-08-12 10:49:54 +08:00
|
|
|
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
|
|
|
|
|
|
class TextSR(object):
|
|
|
|
def __init__(self, args):
|
|
|
|
self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")]
|
|
|
|
self.sr_batch_num = args.sr_batch_num
|
|
|
|
|
|
|
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
|
|
|
utility.create_predictor(args, 'sr', logger)
|
|
|
|
self.benchmark = args.benchmark
|
|
|
|
if args.benchmark:
|
|
|
|
import auto_log
|
|
|
|
pid = os.getpid()
|
|
|
|
gpu_id = utility.get_infer_gpuid()
|
|
|
|
self.autolog = auto_log.AutoLogger(
|
|
|
|
model_name="sr",
|
|
|
|
model_precision=args.precision,
|
|
|
|
batch_size=args.sr_batch_num,
|
|
|
|
data_shape="dynamic",
|
|
|
|
save_path=None, #args.save_log_path,
|
|
|
|
inference_config=self.config,
|
|
|
|
pids=pid,
|
|
|
|
process_name=None,
|
|
|
|
gpu_ids=gpu_id if args.use_gpu else None,
|
|
|
|
time_keys=[
|
|
|
|
'preprocess_time', 'inference_time', 'postprocess_time'
|
|
|
|
],
|
|
|
|
warmup=0,
|
|
|
|
logger=logger)
|
|
|
|
|
|
|
|
def resize_norm_img(self, img):
|
|
|
|
imgC, imgH, imgW = self.sr_image_shape
|
|
|
|
img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC)
|
|
|
|
img_numpy = np.array(img).astype("float32")
|
|
|
|
img_numpy = img_numpy.transpose((2, 0, 1)) / 255
|
|
|
|
return img_numpy
|
|
|
|
|
|
|
|
def __call__(self, img_list):
|
|
|
|
img_num = len(img_list)
|
|
|
|
batch_num = self.sr_batch_num
|
|
|
|
st = time.time()
|
|
|
|
st = time.time()
|
|
|
|
all_result = [] * img_num
|
|
|
|
if self.benchmark:
|
|
|
|
self.autolog.times.start()
|
|
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
|
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
|
|
|
norm_img_batch = []
|
|
|
|
imgC, imgH, imgW = self.sr_image_shape
|
|
|
|
for ino in range(beg_img_no, end_img_no):
|
|
|
|
norm_img = self.resize_norm_img(img_list[ino])
|
|
|
|
norm_img = norm_img[np.newaxis, :]
|
|
|
|
norm_img_batch.append(norm_img)
|
|
|
|
|
|
|
|
norm_img_batch = np.concatenate(norm_img_batch)
|
|
|
|
norm_img_batch = norm_img_batch.copy()
|
|
|
|
if self.benchmark:
|
|
|
|
self.autolog.times.stamp()
|
|
|
|
self.input_tensor.copy_from_cpu(norm_img_batch)
|
|
|
|
self.predictor.run()
|
|
|
|
outputs = []
|
|
|
|
for output_tensor in self.output_tensors:
|
|
|
|
output = output_tensor.copy_to_cpu()
|
|
|
|
outputs.append(output)
|
|
|
|
if len(outputs) != 1:
|
|
|
|
preds = outputs
|
|
|
|
else:
|
|
|
|
preds = outputs[0]
|
|
|
|
all_result.append(outputs)
|
|
|
|
if self.benchmark:
|
|
|
|
self.autolog.times.end(stamp=True)
|
|
|
|
return all_result, time.time() - st
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
|
|
text_recognizer = TextSR(args)
|
|
|
|
valid_image_file_list = []
|
|
|
|
img_list = []
|
|
|
|
|
|
|
|
# warmup 2 times
|
|
|
|
if args.warmup:
|
|
|
|
img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8)
|
|
|
|
for i in range(2):
|
|
|
|
res = text_recognizer([img] * int(args.sr_batch_num))
|
|
|
|
|
|
|
|
for image_file in image_file_list:
|
2022-08-21 10:55:49 +08:00
|
|
|
img, flag, _ = check_and_read(image_file)
|
2022-08-12 10:49:54 +08:00
|
|
|
if not flag:
|
|
|
|
img = Image.open(image_file).convert("RGB")
|
|
|
|
if img is None:
|
|
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
|
|
continue
|
|
|
|
valid_image_file_list.append(image_file)
|
|
|
|
img_list.append(img)
|
|
|
|
try:
|
|
|
|
preds, _ = text_recognizer(img_list)
|
|
|
|
for beg_no in range(len(preds)):
|
|
|
|
sr_img = preds[beg_no][1]
|
|
|
|
lr_img = preds[beg_no][0]
|
|
|
|
for i in (range(sr_img.shape[0])):
|
|
|
|
fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
|
|
|
|
fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
|
|
|
|
img_name_pure = os.path.split(valid_image_file_list[
|
|
|
|
beg_no * args.sr_batch_num + i])[-1]
|
|
|
|
cv2.imwrite("infer_result/sr_{}".format(img_name_pure),
|
|
|
|
fm_sr[:, :, ::-1])
|
|
|
|
logger.info("The visualized image saved in infer_result/sr_{}".
|
|
|
|
format(img_name_pure))
|
|
|
|
|
|
|
|
except Exception as E:
|
|
|
|
logger.info(traceback.format_exc())
|
|
|
|
logger.info(E)
|
|
|
|
exit()
|
|
|
|
if args.benchmark:
|
|
|
|
text_recognizer.autolog.report()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main(utility.parse_args())
|