PaddleOCR/ppocr/modeling/architectures/model.py

126 lines
4.1 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append('/home/zhoujun20/PaddleOCR')
import paddle
from paddle import nn
from ppocr.modeling.transform import build_transform
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head
__all__ = ['Model']
class Model(nn.Layer):
def __init__(self, config):
"""
Detection module for OCR.
args:
config (dict): the super parameters for module.
"""
super(Model, self).__init__()
algorithm = config['algorithm']
self.type = config['type']
self.model_name = '{}_{}'.format(self.type, algorithm)
in_channels = config.get('in_channels', 3)
# build transfrom,
# for rec, transfrom can be TPS,None
# for det and cls, transfrom shoule to be None,
# if you make model differently, you can use transfrom in det and cls
if 'Transform' not in config or config['Transform'] is None:
self.use_transform = False
else:
self.use_transform = True
config['Transform']['in_channels'] = in_channels
self.transform = build_transform(config['Transform'])
in_channels = self.transform.out_channels
# build backbone, backbone is need for del, rec and cls
config["Backbone"]['in_channels'] = in_channels
self.backbone = build_backbone(config["Backbone"], self.type)
in_channels = self.backbone.out_channels
# build neck
# for rec, neck can be cnn,rnn or reshape(None)
# for det, neck can be FPN, BIFPN and so on.
# for cls, neck should be none
if 'Neck' not in config or config['Neck'] is None:
self.use_neck = False
else:
self.use_neck = True
config['Neck']['in_channels'] = in_channels
self.neck = build_neck(config['Neck'])
in_channels = self.neck.out_channels
# # build head, head is need for del, rec and cls
config["Head"]['in_channels'] = in_channels
self.head = build_head(config["Head"])
# @paddle.jit.to_static
def forward(self, x):
if self.use_transform:
x = self.transform(x)
x = self.backbone(x)
if self.use_neck:
x = self.neck(x)
x = self.head(x)
return x
def check_static():
import numpy as np
from ppocr.utils.save_load import load_dygraph_pretrain
from ppocr.utils.logging import get_logger
from tools import program
2020-10-16 20:18:45 +08:00
config = program.load_config('configs/rec/rec_r34_vd_none_bilstm_ctc.yml')
2020-10-13 17:13:33 +08:00
logger = get_logger()
2020-10-16 20:18:45 +08:00
np.random.seed(0)
data = np.random.rand(1, 3, 32, 320).astype(np.float32)
2020-10-13 17:13:33 +08:00
paddle.disable_static()
config['Architecture']['in_channels'] = 3
config['Architecture']["Head"]['out_channels'] = 6624
model = Model(config['Architecture'])
model.eval()
load_dygraph_pretrain(
model,
logger,
2020-10-16 20:18:45 +08:00
'/Users/zhoujun20/Desktop/code/PaddleOCR/cnn_ctc/cnn_ctc',
2020-10-13 17:13:33 +08:00
load_static_weights=True)
2020-10-16 20:18:45 +08:00
x = paddle.to_tensor(data)
2020-10-13 17:13:33 +08:00
y = model(x)
for y1 in y:
print(y1.shape)
2020-10-16 20:18:45 +08:00
static_out = np.load(
'/Users/zhoujun20/Desktop/code/PaddleOCR/output/conv.npy')
2020-10-13 17:13:33 +08:00
diff = y.numpy() - static_out
print(y.shape, static_out.shape, diff.mean())
if __name__ == '__main__':
check_static()