55 lines
1.8 KiB
Python
55 lines
1.8 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# pylint: disable=doc-string-missing
|
||
|
|
||
|
from paddle_serving_client import Client
|
||
|
import sys
|
||
|
import numpy as np
|
||
|
import base64
|
||
|
import os
|
||
|
import cv2
|
||
|
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
|
||
|
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||
|
from ocr_reader import OCRReader
|
||
|
|
||
|
client = Client()
|
||
|
# TODO:load_client need to load more than one client model.
|
||
|
# this need to figure out some details.
|
||
|
client.load_client_config(sys.argv[1:])
|
||
|
client.connect(["127.0.0.1:9293"])
|
||
|
|
||
|
import paddle
|
||
|
test_img_dir = "test_img/"
|
||
|
|
||
|
ocr_reader = OCRReader(char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
|
||
|
|
||
|
|
||
|
def cv2_to_base64(image):
|
||
|
return base64.b64encode(image).decode(
|
||
|
'utf8') #data.tostring()).decode('utf8')
|
||
|
|
||
|
|
||
|
for img_file in os.listdir(test_img_dir):
|
||
|
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
|
||
|
image_data = file.read()
|
||
|
image = cv2_to_base64(image_data)
|
||
|
res_list = []
|
||
|
fetch_map = client.predict(
|
||
|
feed={"x": image}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
|
||
|
one_batch_res = ocr_reader.postprocess(fetch_map, with_score=True)
|
||
|
for res in one_batch_res:
|
||
|
res_list.append(res[0])
|
||
|
res = {"res": str(res_list)}
|
||
|
print(res)
|