90 lines
3.3 KiB
Python
90 lines
3.3 KiB
Python
|
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
import os
|
||
|
import pickle
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
|
||
|
class CenterLoss(nn.Layer):
|
||
|
"""
|
||
|
Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
num_classes=6625,
|
||
|
feat_dim=96,
|
||
|
init_center=False,
|
||
|
center_file_path=None):
|
||
|
super().__init__()
|
||
|
self.num_classes = num_classes
|
||
|
self.feat_dim = feat_dim
|
||
|
self.centers = paddle.randn(
|
||
|
shape=[self.num_classes, self.feat_dim]).astype(
|
||
|
"float64") #random center
|
||
|
|
||
|
if init_center:
|
||
|
assert os.path.exists(
|
||
|
center_file_path
|
||
|
), f"center path({center_file_path}) must exist when init_center is set as True."
|
||
|
with open(center_file_path, 'rb') as f:
|
||
|
char_dict = pickle.load(f)
|
||
|
for key in char_dict.keys():
|
||
|
self.centers[key] = paddle.to_tensor(char_dict[key])
|
||
|
|
||
|
def __call__(self, predicts, batch):
|
||
|
assert isinstance(predicts, (list, tuple))
|
||
|
features, predicts = predicts
|
||
|
|
||
|
feats_reshape = paddle.reshape(
|
||
|
features, [-1, features.shape[-1]]).astype("float64")
|
||
|
label = paddle.argmax(predicts, axis=2)
|
||
|
label = paddle.reshape(label, [label.shape[0] * label.shape[1]])
|
||
|
|
||
|
batch_size = feats_reshape.shape[0]
|
||
|
|
||
|
#calc feat * feat
|
||
|
dist1 = paddle.sum(paddle.square(feats_reshape), axis=1, keepdim=True)
|
||
|
dist1 = paddle.expand(dist1, [batch_size, self.num_classes])
|
||
|
|
||
|
#dist2 of centers
|
||
|
dist2 = paddle.sum(paddle.square(self.centers), axis=1,
|
||
|
keepdim=True) #num_classes
|
||
|
dist2 = paddle.expand(dist2,
|
||
|
[self.num_classes, batch_size]).astype("float64")
|
||
|
dist2 = paddle.transpose(dist2, [1, 0])
|
||
|
|
||
|
#first x * x + y * y
|
||
|
distmat = paddle.add(dist1, dist2)
|
||
|
tmp = paddle.matmul(feats_reshape,
|
||
|
paddle.transpose(self.centers, [1, 0]))
|
||
|
distmat = distmat - 2.0 * tmp
|
||
|
|
||
|
#generate the mask
|
||
|
classes = paddle.arange(self.num_classes).astype("int64")
|
||
|
label = paddle.expand(
|
||
|
paddle.unsqueeze(label, 1), (batch_size, self.num_classes))
|
||
|
mask = paddle.equal(
|
||
|
paddle.expand(classes, [batch_size, self.num_classes]),
|
||
|
label).astype("float64") #get mask
|
||
|
dist = paddle.multiply(distmat, mask)
|
||
|
loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
|
||
|
return {'loss_center': loss}
|