PaddleOCR/ppocr/modeling/backbones/vqa_layoutlm.py

124 lines
3.9 KiB
Python
Raw Normal View History

# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddle import nn
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']
class NLPBaseModel(nn.Layer):
def __init__(self,
base_model_class,
model_class,
type='ser',
pretrained_model=None,
checkpoints=None,
**kwargs):
super(NLPBaseModel, self).__init__()
assert pretrained_model is not None or checkpoints is not None, "one of pretrained_model and checkpoints must be not None"
if checkpoints is not None:
self.model = model_class.from_pretrained(checkpoints)
else:
base_model = base_model_class.from_pretrained(pretrained_model)
if type == 'ser':
self.model = model_class(
base_model, num_classes=kwargs['num_classes'], dropout=None)
else:
self.model = model_class(base_model, dropout=None)
self.out_channels = 1
class LayoutXLMForSer(NLPBaseModel):
def __init__(self,
num_classes,
pretrained_model='layoutxlm-base-uncased',
checkpoints=None,
**kwargs):
super(LayoutXLMForSer, self).__init__(
LayoutXLMModel,
LayoutXLMForTokenClassification,
'ser',
pretrained_model,
checkpoints,
num_classes=num_classes)
def forward(self, x):
x = self.model(
input_ids=x[0],
bbox=x[2],
image=x[3],
attention_mask=x[4],
token_type_ids=x[5],
position_ids=None,
head_mask=None,
labels=None)
return x[0]
class LayoutLMForSer(NLPBaseModel):
def __init__(self,
num_classes,
pretrained_model='layoutxlm-base-uncased',
checkpoints=None,
**kwargs):
super(LayoutLMForSer, self).__init__(
LayoutLMModel,
LayoutLMForTokenClassification,
'ser',
pretrained_model,
checkpoints,
num_classes=num_classes)
def forward(self, x):
x = self.model(
input_ids=x[0],
bbox=x[2],
attention_mask=x[4],
token_type_ids=x[5],
position_ids=None,
output_hidden_states=False)
return x
class LayoutXLMForRe(NLPBaseModel):
def __init__(self,
pretrained_model='layoutxlm-base-uncased',
checkpoints=None,
**kwargs):
super(LayoutXLMForRe, self).__init__(
LayoutXLMModel, LayoutXLMForRelationExtraction, 're',
pretrained_model, checkpoints)
def forward(self, x):
x = self.model(
input_ids=x[0],
bbox=x[1],
labels=None,
image=x[2],
attention_mask=x[3],
token_type_ids=x[4],
position_ids=None,
head_mask=None,
entities=x[5],
relations=x[6])
return x