124 lines
3.9 KiB
Python
124 lines
3.9 KiB
Python
|
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
from paddle import nn
|
||
|
|
||
|
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
|
||
|
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
|
||
|
|
||
|
__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']
|
||
|
|
||
|
|
||
|
class NLPBaseModel(nn.Layer):
|
||
|
def __init__(self,
|
||
|
base_model_class,
|
||
|
model_class,
|
||
|
type='ser',
|
||
|
pretrained_model=None,
|
||
|
checkpoints=None,
|
||
|
**kwargs):
|
||
|
super(NLPBaseModel, self).__init__()
|
||
|
assert pretrained_model is not None or checkpoints is not None, "one of pretrained_model and checkpoints must be not None"
|
||
|
if checkpoints is not None:
|
||
|
self.model = model_class.from_pretrained(checkpoints)
|
||
|
else:
|
||
|
base_model = base_model_class.from_pretrained(pretrained_model)
|
||
|
if type == 'ser':
|
||
|
self.model = model_class(
|
||
|
base_model, num_classes=kwargs['num_classes'], dropout=None)
|
||
|
else:
|
||
|
self.model = model_class(base_model, dropout=None)
|
||
|
self.out_channels = 1
|
||
|
|
||
|
|
||
|
class LayoutXLMForSer(NLPBaseModel):
|
||
|
def __init__(self,
|
||
|
num_classes,
|
||
|
pretrained_model='layoutxlm-base-uncased',
|
||
|
checkpoints=None,
|
||
|
**kwargs):
|
||
|
super(LayoutXLMForSer, self).__init__(
|
||
|
LayoutXLMModel,
|
||
|
LayoutXLMForTokenClassification,
|
||
|
'ser',
|
||
|
pretrained_model,
|
||
|
checkpoints,
|
||
|
num_classes=num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.model(
|
||
|
input_ids=x[0],
|
||
|
bbox=x[2],
|
||
|
image=x[3],
|
||
|
attention_mask=x[4],
|
||
|
token_type_ids=x[5],
|
||
|
position_ids=None,
|
||
|
head_mask=None,
|
||
|
labels=None)
|
||
|
return x[0]
|
||
|
|
||
|
|
||
|
class LayoutLMForSer(NLPBaseModel):
|
||
|
def __init__(self,
|
||
|
num_classes,
|
||
|
pretrained_model='layoutxlm-base-uncased',
|
||
|
checkpoints=None,
|
||
|
**kwargs):
|
||
|
super(LayoutLMForSer, self).__init__(
|
||
|
LayoutLMModel,
|
||
|
LayoutLMForTokenClassification,
|
||
|
'ser',
|
||
|
pretrained_model,
|
||
|
checkpoints,
|
||
|
num_classes=num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.model(
|
||
|
input_ids=x[0],
|
||
|
bbox=x[2],
|
||
|
attention_mask=x[4],
|
||
|
token_type_ids=x[5],
|
||
|
position_ids=None,
|
||
|
output_hidden_states=False)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class LayoutXLMForRe(NLPBaseModel):
|
||
|
def __init__(self,
|
||
|
pretrained_model='layoutxlm-base-uncased',
|
||
|
checkpoints=None,
|
||
|
**kwargs):
|
||
|
super(LayoutXLMForRe, self).__init__(
|
||
|
LayoutXLMModel, LayoutXLMForRelationExtraction, 're',
|
||
|
pretrained_model, checkpoints)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.model(
|
||
|
input_ids=x[0],
|
||
|
bbox=x[1],
|
||
|
labels=None,
|
||
|
image=x[2],
|
||
|
attention_mask=x[3],
|
||
|
token_type_ids=x[4],
|
||
|
position_ids=None,
|
||
|
head_mask=None,
|
||
|
entities=x[5],
|
||
|
relations=x[6])
|
||
|
return x
|