PaddleOCR/deploy/cpp_infer/src/ocr_rec.cpp

186 lines
6.2 KiB
C++
Raw Normal View History

2020-07-13 01:21:47 +08:00
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/ocr_rec.h>
namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
2020-11-17 12:54:24 +08:00
cv::Mat &img, Classifier *cls) {
2020-07-13 01:21:47 +08:00
cv::Mat srcimg;
img.copyTo(srcimg);
cv::Mat crop_img;
cv::Mat resize_img;
std::cout << "The predicted text is :" << std::endl;
int index = 0;
for (int i = boxes.size() - 1; i >= 0; i--) {
2020-07-13 16:59:21 +08:00
crop_img = GetRotateCropImage(srcimg, boxes[i]);
2020-11-17 12:54:24 +08:00
if (cls != nullptr) {
crop_img = cls->Run(crop_img);
}
2020-07-13 01:21:47 +08:00
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
this->resize_op_.Run(crop_img, resize_img, wh_ratio);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
2020-07-13 16:59:21 +08:00
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
2020-07-13 01:21:47 +08:00
2020-07-13 16:59:21 +08:00
this->permute_op_.Run(&resize_img, input.data());
2020-07-13 01:21:47 +08:00
// Inference.
2020-12-21 21:41:33 +08:00
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
2020-07-13 01:21:47 +08:00
2020-11-17 12:54:24 +08:00
std::vector<float> predict_batch;
2020-07-13 01:21:47 +08:00
auto output_names = this->predictor_->GetOutputNames();
2020-12-21 21:41:33 +08:00
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
2020-11-17 12:54:24 +08:00
auto predict_shape = output_t->shape();
2020-11-17 12:54:24 +08:00
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
2020-07-13 01:21:47 +08:00
std::multiplies<int>());
2020-11-17 12:54:24 +08:00
predict_batch.resize(out_num);
2020-07-13 01:21:47 +08:00
2020-12-21 21:41:33 +08:00
output_t->CopyToCpu(predict_batch.data());
2020-07-13 01:21:47 +08:00
2020-11-17 12:54:24 +08:00
// ctc decode
std::vector<std::string> str_res;
2020-07-13 01:21:47 +08:00
int argmax_idx;
2020-11-17 12:54:24 +08:00
int last_index = 0;
2020-07-13 01:21:47 +08:00
float score = 0.f;
int count = 0;
float max_value = 0.0f;
2020-11-17 12:54:24 +08:00
for (int n = 0; n < predict_shape[1]; n++) {
2020-07-13 16:59:21 +08:00
argmax_idx =
2020-11-17 12:54:24 +08:00
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
2020-07-13 01:21:47 +08:00
max_value =
2020-11-17 12:54:24 +08:00
float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (not(i > 0 && argmax_idx == last_index))) {
2020-07-13 01:21:47 +08:00
score += max_value;
count += 1;
2020-11-17 12:54:24 +08:00
str_res.push_back(label_list_[argmax_idx]);
2020-07-13 01:21:47 +08:00
}
2020-11-17 12:54:24 +08:00
last_index = argmax_idx;
2020-07-13 01:21:47 +08:00
}
score /= count;
2020-11-17 12:54:24 +08:00
for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i];
}
2020-07-13 01:21:47 +08:00
std::cout << "\tscore: " << score << std::endl;
}
}
2020-07-13 16:59:21 +08:00
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
2020-12-21 21:41:33 +08:00
// AnalysisConfig config;
paddle_infer::Config config;
2020-12-09 23:55:38 +08:00
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
2020-07-13 01:21:47 +08:00
2020-07-13 16:59:21 +08:00
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
config.EnableTensorRtEngine(
1 << 20, 10, 3,
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
: paddle_infer::Config::Precision::kFloat32,
false, false);
}
2020-07-13 16:59:21 +08:00
} else {
config.DisableGpu();
2020-07-14 13:40:35 +08:00
if (this->use_mkldnn_) {
config.EnableMKLDNN();
2020-11-17 12:54:24 +08:00
// cache 10 different shapes for mkldnn to avoid memory leak
config.SetMkldnnCacheCapacity(10);
2020-07-14 13:40:35 +08:00
}
2020-07-13 16:59:21 +08:00
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
2020-07-13 01:21:47 +08:00
2020-12-21 21:41:33 +08:00
config.SwitchUseFeedFetchOps(false);
2020-07-13 16:59:21 +08:00
// true for multiple input
2020-07-13 01:21:47 +08:00
config.SwitchSpecifyInputNames(true);
2020-07-13 16:59:21 +08:00
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
2020-07-15 13:12:24 +08:00
config.DisableGlogInfo();
2020-07-13 01:21:47 +08:00
2020-12-21 21:41:33 +08:00
this->predictor_ = CreatePredictor(config);
2020-07-13 01:21:47 +08:00
}
2020-07-13 16:59:21 +08:00
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
2020-07-13 01:21:47 +08:00
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
2020-11-17 12:54:24 +08:00
} // namespace PaddleOCR