115 lines
3.7 KiB
Markdown
115 lines
3.7 KiB
Markdown
|
# RobustScanner
|
|||
|
|
|||
|
- [1. 算法简介](#1)
|
|||
|
- [2. 环境配置](#2)
|
|||
|
- [3. 模型训练、评估、预测](#3)
|
|||
|
- [3.1 训练](#3-1)
|
|||
|
- [3.2 评估](#3-2)
|
|||
|
- [3.3 预测](#3-3)
|
|||
|
- [4. 推理部署](#4)
|
|||
|
- [4.1 Python推理](#4-1)
|
|||
|
- [4.2 C++推理](#4-2)
|
|||
|
- [4.3 Serving服务化部署](#4-3)
|
|||
|
- [4.4 更多推理部署](#4-4)
|
|||
|
- [5. FAQ](#5)
|
|||
|
|
|||
|
<a name="1"></a>
|
|||
|
## 1. 算法简介
|
|||
|
|
|||
|
论文信息:
|
|||
|
> [RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition](https://arxiv.org/pdf/2007.07542.pdf)
|
|||
|
> Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne
|
|||
|
Zhang
|
|||
|
> ECCV, 2020
|
|||
|
|
|||
|
使用MJSynth和SynthText两个合成文字识别数据集训练,在IIIT, SVT, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:
|
|||
|
|
|||
|
|模型|骨干网络|配置文件|Acc|下载链接|
|
|||
|
| --- | --- | --- | --- | --- |
|
|||
|
|RobustScanner|ResNet31V2|[rec_r31_robustscanner.yml](../../configs/rec/rec_r31_robustscanner.yml)|87.77%|[训练模型]()|
|
|||
|
|
|||
|
注:除了使用MJSynth和SynthText两个文字识别数据集外,还加入了[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg)数据(提取码:627x),和部分真实数据,具体数据细节可以参考论文。
|
|||
|
|
|||
|
<a name="2"></a>
|
|||
|
## 2. 环境配置
|
|||
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|||
|
|
|||
|
|
|||
|
<a name="3"></a>
|
|||
|
## 3. 模型训练、评估、预测
|
|||
|
|
|||
|
请参考[文本识别教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
|||
|
|
|||
|
训练
|
|||
|
|
|||
|
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
|
|||
|
|
|||
|
```
|
|||
|
#单卡训练(训练周期长,不建议)
|
|||
|
python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml
|
|||
|
|
|||
|
#多卡训练,通过--gpus参数指定卡号
|
|||
|
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r31_robustscanner.yml
|
|||
|
```
|
|||
|
|
|||
|
评估
|
|||
|
|
|||
|
```
|
|||
|
# GPU 评估, Global.pretrained_model 为待测权重
|
|||
|
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
|||
|
```
|
|||
|
|
|||
|
预测:
|
|||
|
|
|||
|
```
|
|||
|
# 预测使用的配置文件必须与训练一致
|
|||
|
python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
|||
|
```
|
|||
|
|
|||
|
<a name="4"></a>
|
|||
|
## 4. 推理部署
|
|||
|
|
|||
|
<a name="4-1"></a>
|
|||
|
### 4.1 Python推理
|
|||
|
首先将RobustScanner文本识别训练过程中保存的模型,转换成inference model。( [模型下载地址]() ),可以使用如下命令进行转换:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_r31_robustscanner
|
|||
|
```
|
|||
|
RobustScanner文本识别模型推理,可以执行如下命令:
|
|||
|
|
|||
|
```
|
|||
|
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False
|
|||
|
```
|
|||
|
|
|||
|
<a name="4-2"></a>
|
|||
|
### 4.2 C++推理
|
|||
|
|
|||
|
由于C++预处理后处理还未支持SAR,所以暂未支持
|
|||
|
|
|||
|
<a name="4-3"></a>
|
|||
|
### 4.3 Serving服务化部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="4-4"></a>
|
|||
|
### 4.4 更多推理部署
|
|||
|
|
|||
|
暂不支持
|
|||
|
|
|||
|
<a name="5"></a>
|
|||
|
## 5. FAQ
|
|||
|
|
|||
|
|
|||
|
## 引用
|
|||
|
|
|||
|
```bibtex
|
|||
|
@article{Li2019ShowAA,
|
|||
|
title={Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition},
|
|||
|
author={Hui Li and Peng Wang and Chunhua Shen and Guyu Zhang},
|
|||
|
journal={ArXiv},
|
|||
|
year={2019},
|
|||
|
volume={abs/1811.00751}
|
|||
|
}
|
|||
|
```
|