2022-04-26 22:32:19 +08:00
|
|
|
|
# PSENet
|
|
|
|
|
|
|
|
|
|
- [1. 算法简介](#1)
|
|
|
|
|
- [2. 环境配置](#2)
|
|
|
|
|
- [3. 模型训练、评估、预测](#3)
|
|
|
|
|
- [3.1 训练](#3-1)
|
|
|
|
|
- [3.2 评估](#3-2)
|
|
|
|
|
- [3.3 预测](#3-3)
|
|
|
|
|
- [4. 推理部署](#4)
|
|
|
|
|
- [4.1 Python推理](#4-1)
|
|
|
|
|
- [4.2 C++推理](#4-2)
|
|
|
|
|
- [4.3 Serving服务化部署](#4-3)
|
|
|
|
|
- [4.4 更多推理部署](#4-4)
|
|
|
|
|
- [5. FAQ](#5)
|
|
|
|
|
|
|
|
|
|
<a name="1"></a>
|
|
|
|
|
## 1. 算法简介
|
|
|
|
|
|
|
|
|
|
论文信息:
|
|
|
|
|
> [Shape robust text detection with progressive scale expansion network](https://arxiv.org/abs/1903.12473)
|
|
|
|
|
> Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai
|
|
|
|
|
> CVPR, 2019
|
|
|
|
|
|
|
|
|
|
在ICDAR2015文本检测公开数据集上,算法复现效果如下:
|
|
|
|
|
|
|
|
|
|
|模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
|
|
|
|
|
| --- | --- | --- | --- | --- | --- | --- |
|
|
|
|
|
|PSE| ResNet50_vd | [configs/det/det_r50_vd_pse.yml](../../configs/det/det_r50_vd_pse.yml)| 85.81% |79.53%|82.55%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|
|
|
|
|
|PSE| MobileNetV3| [configs/det/det_mv3_pse.yml](../../configs/det/det_mv3_pse.yml) | 82.20% |70.48%|75.89%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
|
|
|
|
|
|
|
|
|
|
<a name="2"></a>
|
|
|
|
|
## 2. 环境配置
|
|
|
|
|
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="3"></a>
|
|
|
|
|
## 3. 模型训练、评估、预测
|
|
|
|
|
|
2022-04-26 23:05:23 +08:00
|
|
|
|
上述PSE模型使用ICDAR2015文本检测公开数据集训练得到,数据集下载可参考 [ocr_datasets](./dataset/ocr_datasets.md)。
|
2022-04-26 22:32:19 +08:00
|
|
|
|
|
|
|
|
|
数据下载完成后,请参考[文本检测训练教程](./detection.md)进行训练。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a name="4"></a>
|
|
|
|
|
## 4. 推理部署
|
|
|
|
|
|
|
|
|
|
<a name="4-1"></a>
|
|
|
|
|
### 4.1 Python推理
|
|
|
|
|
首先将PSE文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar) ),可以使用如下命令进行转换:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python3 tools/export_model.py -c configs/det/det_r50_vd_pse.yml -o Global.pretrained_model=./det_r50_vd_pse_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_pse
|
|
|
|
|
```
|
|
|
|
|
|
2022-04-26 22:53:40 +08:00
|
|
|
|
PSE文本检测模型推理,执行非弯曲文本检测,可以执行如下命令:
|
2022-04-26 22:32:19 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
2022-04-26 22:53:40 +08:00
|
|
|
|
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=quad
|
2022-04-26 22:32:19 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
2022-04-26 22:53:40 +08:00
|
|
|
|
如果想执行弯曲文本检测,可以执行如下命令:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=poly
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文或弯曲文本图像检测效果会比较差。
|
2022-04-26 22:32:19 +08:00
|
|
|
|
|
|
|
|
|
<a name="4-2"></a>
|
|
|
|
|
### 4.2 C++推理
|
|
|
|
|
|
|
|
|
|
由于后处理暂未使用CPP编写,PSE文本检测模型暂不支持CPP推理。
|
|
|
|
|
|
|
|
|
|
<a name="4-3"></a>
|
|
|
|
|
### 4.3 Serving服务化部署
|
|
|
|
|
|
|
|
|
|
暂未支持
|
|
|
|
|
|
|
|
|
|
<a name="4-4"></a>
|
|
|
|
|
### 4.4 更多推理部署
|
|
|
|
|
|
|
|
|
|
暂未支持
|
|
|
|
|
|
|
|
|
|
<a name="5"></a>
|
|
|
|
|
## 5. FAQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## 引用
|
|
|
|
|
|
|
|
|
|
```bibtex
|
|
|
|
|
@inproceedings{wang2019shape,
|
|
|
|
|
title={Shape robust text detection with progressive scale expansion network},
|
|
|
|
|
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
|
|
|
|
|
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
|
|
|
|
pages={9336--9345},
|
|
|
|
|
year={2019}
|
|
|
|
|
}
|
|
|
|
|
```
|